diff options
author | bloodstalker <thabogre@gmail.com> | 2018-09-03 12:20:59 +0000 |
---|---|---|
committer | bloodstalker <thabogre@gmail.com> | 2018-09-03 12:20:59 +0000 |
commit | 93c602dcc2b408c1a6307d65e80f48da9115370c (patch) | |
tree | 9e208ec032ded9cfa75667d233c97889c5b0f901 | |
parent | update (diff) | |
download | seer-93c602dcc2b408c1a6307d65e80f48da9115370c.tar.gz seer-93c602dcc2b408c1a6307d65e80f48da9115370c.zip |
update
Diffstat (limited to '')
-rwxr-xr-x | cnn.py | 186 |
1 files changed, 156 insertions, 30 deletions
@@ -1,5 +1,6 @@ #!/usr/bin/python3 # _*_ coding=utf-8 _*_ +# original source-https://medium.com/@huangkh19951228/predicting-cryptocurrency-price-with-tensorflow-and-keras-e1674b0dc58a import argparse import code @@ -14,6 +15,15 @@ import urllib3 import requests from pathlib import Path from sklearn.preprocessing import MinMaxScaler +import h5py +from keras.models import Sequential +from keras.layers import Dense, Dropout, Activation, Flatten, Reshape +from keras.layers import Conv1D, MaxPooling1D, LeakyReLU, PReLU +from keras.layers import LSTM +from keras.utils import np_utils +from keras.callbacks import CSVLogger, ModelCheckpoint +import tensorflow as tf +from keras.backend.tensorflow_backend import set_session def SigHandler_SIGINT(signum, frame): print() @@ -38,7 +48,7 @@ class PastSampler(object): if self.sliding_window: I = np.arange(M) + np.arange(A.shape[0] - M + 1).reshape(-1,1) else: - if A.shapep[0]%M == 0: + if A.shape[0]%M == 0: I = np.arange(M) + np.arange(0, A.shape[0], M).reshape(-1,1) else: I = np.arange(M) + np.arange(0, A.shape[0] - M, M).reshape(-1,1) @@ -48,43 +58,159 @@ class PastSampler(object): return B[:, :ci], B[:, ci:] def getData(symbol_str): - data_file = Path("./" + symbol_str + ".csv") + data_file = Path("./cnn/" + symbol_str + ".csv") original_columns =["close", "date", "high", "low", "open"] new_columns = ["Close", "Timestamp", "High", "Low", "Open"] columns = ["Close"] - if data_file.is_file(): - original_data_file = pd.read_csv(data_file).loc[:, columns] - return pd.read_csv(data_file).loc[:, columns], original_data_file - else: - url = "https://poloniex.com/public?command=returnChartData¤cyPair=USDT_" + symbol_str + "&start=1356998100&end=9999999999&period=300" - r = requests.get(url) - d = json.loads(r.content.decode("utf-8")) - df = pd.DataFrame(d) - - df = df.loc[:, original_columns] - df.columns = new_columns - df.to_csv(symbol_str + ".csv", index=None) - df = pd.read_csv(data_file) - time_stamps = df["Timestamp"] - df = df.loc[:, columns] - original_data_file = pd.read_csv(data_file).loc[:, columns] - return df + url = "https://poloniex.com/public?command=returnChartData¤cyPair=USDT_" + symbol_str + "&start=1356998100&end=9999999999&period=300" + r = requests.get(url) + d = json.loads(r.content.decode("utf-8")) + df = pd.DataFrame(d) + + df = df.loc[:, original_columns] + df.columns = new_columns + df.to_csv("./cnn/" + symbol_str + ".csv", index=None) + df = pd.read_csv(data_file) + time_stamps = df["Timestamp"] + df = df.loc[:, columns] + original_df = pd.read_csv(data_file).loc[:, columns] + return df, original_df, time_stamps + +def Scaler(df, original_df, time_stamps, symbol_str): + file_name="./cnn/" + symbol_str + "_close.h5" + scaler = MinMaxScaler() + columns= ["Close"] + for c in columns: + df[c] = scaler.fit_transform(df[c].values.reshape(-1,1)) + A = np.array(df)[:,None,:] + original_A = np.array(original_df)[:,None,:] + time_stamps = np.array(time_stamps)[:,None,None] + NPS, NFS = 256, 16 + ps = PastSampler(NPS, NFS, sliding_window=False) + B, Y = ps.transform(A) + input_times, output_times = ps.transform(time_stamps) + original_B, original_Y = ps.transform(original_A) + + with h5py.File(file_name, "w") as f: + f.create_dataset("inputs", data=B) + f.create_dataset("outputs", data=Y) + f.create_dataset("input_times", data=input_times) + f.create_dataset("output_times", data=output_times) + f.create_dataset("original_datas", data=np.array(original_df)) + f.create_dataset("original_inputs", data=original_B) + f.create_dataset("original_outputs", data=original_Y) + +def cnn_type_1(symbol_str): + df, original_df, time_stamps = getData(symbol_str) + Scaler(df, original_df, time_stamps, symbol_str) + # run on gpu + ''' + os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" + os.environ["CUDA_VISIBLE_DEVICES"] = "1" + os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2" + ''' + + config = tf.ConfigProto() + config.gpu_options.allow_growth = True + set_session(tf.Session(config=config)) + + with h5py.File("".join("./cnn/" + symbol_str + "_close.h5"), "r") as hf: + datas = hf["inputs"].value + labels = hf["outputs"].value + + output_file_name = "cnn/" + symbol_str + "_CNN_2_relu" + step_size = datas.shape[1] + batch_size = 8 + nb_features = datas.shape[2] + + epochs = 100 + + #split training validation + training_size = int(0.8* datas.shape[0]) + training_datas = datas[:training_size,:] + training_labels = labels[:training_size,:] + validation_datas = datas[training_size:,:] + validation_labels = labels[training_size:,:] + + model = Sequential() + + # 2 Layers + model.add(Conv1D(activation='relu', input_shape=(step_size, nb_features), strides=3, filters=8, kernel_size=20)) + model.add(Dropout(0.5)) + model.add(Conv1D( strides=4, filters=nb_features, kernel_size=16)) + + ''' + # 3 Layers + model.add(Conv1D(activation='relu', input_shape=(step_size, nb_features), strides=3, filters=8, kernel_size=8)) + #model.add(LeakyReLU()) + model.add(Dropout(0.5)) + model.add(Conv1D(activation='relu', strides=2, filters=8, kernel_size=8)) + #model.add(LeakyReLU()) + model.add(Dropout(0.5)) + model.add(Conv1D( strides=2, filters=nb_features, kernel_size=8)) + # 4 layers + model.add(Conv1D(activation='relu', input_shape=(step_size, nb_features), strides=2, filters=8, kernel_size=2)) + #model.add(LeakyReLU()) + model.add(Dropout(0.5)) + model.add(Conv1D(activation='relu', strides=2, filters=8, kernel_size=2)) + #model.add(LeakyReLU()) + model.add(Dropout(0.5)) + model.add(Conv1D(activation='relu', strides=2, filters=8, kernel_size=2)) + #model.add(LeakyReLU()) + model.add(Dropout(0.5)) + model.add(Conv1D( strides=2, filters=nb_features, kernel_size=2)) + ''' + + model.compile(loss='mse', optimizer='adam') + model.fit(training_datas, training_labels,verbose=1, batch_size=batch_size,validation_data=(validation_datas,validation_labels), epochs = epochs, callbacks=[CSVLogger(output_file_name+'.csv', append=True),ModelCheckpoint(output_file_name+'-{epoch:02d}-{val_loss:.5f}.hdf5', monitor='val_loss', verbose=1,mode='min')]) + +def lstm_type_cnn_1(symbol_str): + df, original_df, time_stamps = getData(symbol_str) + Scaler(df, original_df, time_stamps, symbol_str) + os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID' + os.environ['CUDA_VISIBLE_DEVICES'] = '1' + os.environ['TF_CPP_MIN_LOG_LEVEL']='2' + + config = tf.ConfigProto() + config.gpu_options.allow_growth = True + set_session(tf.Session(config=config)) + + with h5py.File("".join("./cnn/" + symbol_str + "_close.h5"), "r") as hf: + datas = hf['inputs'].value + labels = hf['outputs'].value + + step_size = datas.shape[1] + units= 50 + second_units = 30 + batch_size = 8 + nb_features = datas.shape[2] + epochs = 100 + output_size=16 + output_file_name = "cnn/" + symbol_str + "_CNN_LSTM_2_relu" + #split training validation + training_size = int(0.8* datas.shape[0]) + training_datas = datas[:training_size,:] + training_labels = labels[:training_size,:,0] + validation_datas = datas[training_size:,:] + validation_labels = labels[training_size:,:,0] + + #build model + model = Sequential() + model.add(LSTM(units=units,activation='tanh', input_shape=(step_size,nb_features),return_sequences=False)) + model.add(Dropout(0.8)) + model.add(Dense(output_size)) + model.add(LeakyReLU()) + model.compile(loss='mse', optimizer='adam') + model.fit(training_datas, training_labels, batch_size=batch_size,validation_data=(validation_datas,validation_labels), epochs = epochs, callbacks=[CSVLogger(output_file_name+'.csv', append=True),ModelCheckpoint(output_file_name+'-{epoch:02d}-{val_loss:.5f}.hdf5', monitor='val_loss', verbose=1,mode='min')]) + + # write code here def premain(argparser): signal.signal(signal.SIGINT, SigHandler_SIGINT) #here - columns = ["Close"] - btc_df, orig_btc = getData("BTC") - eth_df, orig_eth = getData("ETH") - scaler = MinMaxScaler() - for c in columns: - btc_df[c] = scaler.fit_transform(btc_df[c].values.reshape(-1, 1)) - eth_df[c] = scaler.fit_transform(eth_df[c].values.reshape(-1, 1)) - - A = np.array(eth_df)[:,None,:] - original_A = np.array(orig_eth)[:,None,:] - time_stamps = np.array(time_stamps)[:, None, None] + #cnn_type_1("ETH") + lstm_type_cnn_1("ETH") def main(): argparser = Argparser() |