diff options
author | bloodstalker <thabogre@gmail.com> | 2018-11-17 11:13:53 +0000 |
---|---|---|
committer | bloodstalker <thabogre@gmail.com> | 2018-11-17 11:13:53 +0000 |
commit | 544f9d5289601a8ff2db4b92086d9cb7089128f5 (patch) | |
tree | e399696b66c2237e2295a469fd2c7f28cbef9bb0 | |
parent | update (diff) | |
download | seer-544f9d5289601a8ff2db4b92086d9cb7089128f5.tar.gz seer-544f9d5289601a8ff2db4b92086d9cb7089128f5.zip |
update
20 files changed, 94 insertions, 14 deletions
diff --git a/dlstuff/four.py b/dlstuff/four.py index 983386a..90f58b9 100755 --- a/dlstuff/four.py +++ b/dlstuff/four.py @@ -1,4 +1,4 @@ -#!/usr/bin/python3 +#!python # _*_ coding=utf-8 _*_ import argparse @@ -48,6 +48,7 @@ def premain(argparser): signal.signal(signal.SIGINT, SigHandler_SIGINT) #here (train_data, train_targets), (test_data, test_targets) = boston_housing.load_data() + print(type(train_data)) mean = train_data.mean(axis=0) train_data -= mean std = train_data.std(axis=0) diff --git a/dlstuff/two.py b/dlstuff/two.py index 8287708..1d4a614 100755 --- a/dlstuff/two.py +++ b/dlstuff/two.py @@ -66,14 +66,12 @@ def premain(argparser): x_test = vectorize_sequences(test_data) y_train = np.asarray(train_labels).astype("float32") y_test = np.asarray(test_labels).astype("float32") - model = models.Sequential() model.add(layers.Dense(16, kernel_regularizer=regularizers.l2(0.001), activation="relu", input_shape=(10000,))) model.add(layers.Dropout(0.5)) model.add(layers.Dense(16, kernel_regularizer=regularizers.l2(0.001), activation="relu")) model.add(layers.Dropout(0.5)) model.add(layers.Dense(1, activation="sigmoid")) - x_val = x_train[:10000] partial_x_train = x_train[10000:] y_val = y_train[:10000] diff --git a/lstm-models/ethereum_model_randseed_775.h5 b/lstm-models/ethereum_model_randseed_775.h5 Binary files differindex 27fc878..e58c5d7 100644 --- a/lstm-models/ethereum_model_randseed_775.h5 +++ b/lstm-models/ethereum_model_randseed_775.h5 diff --git a/lstm-models/ethereum_model_randseed_776.h5 b/lstm-models/ethereum_model_randseed_776.h5 Binary files differindex e45229a..ab642c0 100644 --- a/lstm-models/ethereum_model_randseed_776.h5 +++ b/lstm-models/ethereum_model_randseed_776.h5 diff --git a/lstm-models/ethereum_model_randseed_777.h5 b/lstm-models/ethereum_model_randseed_777.h5 Binary files differindex e341f72..d7c5276 100644 --- a/lstm-models/ethereum_model_randseed_777.h5 +++ b/lstm-models/ethereum_model_randseed_777.h5 diff --git a/lstm-models/ethereum_model_randseed_778.h5 b/lstm-models/ethereum_model_randseed_778.h5 Binary files differindex a53d9bf..1d15190 100644 --- a/lstm-models/ethereum_model_randseed_778.h5 +++ b/lstm-models/ethereum_model_randseed_778.h5 diff --git a/lstm-models/ethereum_model_randseed_779.h5 b/lstm-models/ethereum_model_randseed_779.h5 Binary files differindex 01a57f4..30ea4b4 100644 --- a/lstm-models/ethereum_model_randseed_779.h5 +++ b/lstm-models/ethereum_model_randseed_779.h5 diff --git a/lstm-models/ethereum_model_randseed_780.h5 b/lstm-models/ethereum_model_randseed_780.h5 Binary files differindex 5882283..9973650 100644 --- a/lstm-models/ethereum_model_randseed_780.h5 +++ b/lstm-models/ethereum_model_randseed_780.h5 diff --git a/lstm-models/ethereum_model_randseed_781.h5 b/lstm-models/ethereum_model_randseed_781.h5 Binary files differindex 4bda2c7..7ea593c 100644 --- a/lstm-models/ethereum_model_randseed_781.h5 +++ b/lstm-models/ethereum_model_randseed_781.h5 diff --git a/lstm-models/ethereum_model_randseed_782.h5 b/lstm-models/ethereum_model_randseed_782.h5 Binary files differindex d6d2177..32b08ba 100644 --- a/lstm-models/ethereum_model_randseed_782.h5 +++ b/lstm-models/ethereum_model_randseed_782.h5 diff --git a/lstm-models/ethereum_model_randseed_783.h5 b/lstm-models/ethereum_model_randseed_783.h5 Binary files differindex f52f6f9..13f3112 100644 --- a/lstm-models/ethereum_model_randseed_783.h5 +++ b/lstm-models/ethereum_model_randseed_783.h5 diff --git a/lstm-models/ethereum_model_randseed_784.h5 b/lstm-models/ethereum_model_randseed_784.h5 Binary files differindex 6d9b7a5..024c70f 100644 --- a/lstm-models/ethereum_model_randseed_784.h5 +++ b/lstm-models/ethereum_model_randseed_784.h5 diff --git a/lstm-models/ethereum_model_randseed_785.h5 b/lstm-models/ethereum_model_randseed_785.h5 Binary files differindex 370cb02..bd1ac60 100644 --- a/lstm-models/ethereum_model_randseed_785.h5 +++ b/lstm-models/ethereum_model_randseed_785.h5 diff --git a/lstm-models/ethereum_model_randseed_786.h5 b/lstm-models/ethereum_model_randseed_786.h5 Binary files differindex 43153a1..748f4cf 100644 --- a/lstm-models/ethereum_model_randseed_786.h5 +++ b/lstm-models/ethereum_model_randseed_786.h5 diff --git a/lstm-models/ethereum_model_randseed_787.h5 b/lstm-models/ethereum_model_randseed_787.h5 Binary files differindex 2bb8ddc..ad30e52 100644 --- a/lstm-models/ethereum_model_randseed_787.h5 +++ b/lstm-models/ethereum_model_randseed_787.h5 diff --git a/lstm-models/ethereum_model_randseed_788.h5 b/lstm-models/ethereum_model_randseed_788.h5 Binary files differindex 74a5a8c..15eac0b 100644 --- a/lstm-models/ethereum_model_randseed_788.h5 +++ b/lstm-models/ethereum_model_randseed_788.h5 diff --git a/lstm-models/ethereum_model_randseed_789.h5 b/lstm-models/ethereum_model_randseed_789.h5 Binary files differindex 4af9d00..14862c9 100644 --- a/lstm-models/ethereum_model_randseed_789.h5 +++ b/lstm-models/ethereum_model_randseed_789.h5 diff --git a/lstm-models/ethereum_model_randseed_790.h5 b/lstm-models/ethereum_model_randseed_790.h5 Binary files differindex 45ba97b..cf56e88 100644 --- a/lstm-models/ethereum_model_randseed_790.h5 +++ b/lstm-models/ethereum_model_randseed_790.h5 @@ -1,4 +1,4 @@ -#!/usr/bin/python3 +#!python # _*_ coding=utf-8 _*_ #original source:https://github.com/dashee87/blogScripts/blob/master/Jupyter/2017-11-20-predicting-cryptocurrency-prices-with-deep-learning.ipynb @@ -22,7 +22,7 @@ from keras.layers import Dropout from keras.models import load_model window_len = 10 -split_date = "2017-06-01" +split_date = "2018-03-01" def SigHandler_SIGINT(signum, frame): print() @@ -37,22 +37,29 @@ class Argparser(object): self.args = parser.parse_args() def getData_CMC(crypto, crypto_short): - market_info = pd.read_html("https://coinmarketcap.com/currencies/"+crypto+"/historical-data/?start=20130428&end="+time.strftime("%Y%m%d"))[0] + market_info = pd.read_html("https://coinmarketcap.com/currencies/"+crypto+"/historical-data/?start=20160428&end="+time.strftime("%Y%m%d"))[0] + print(type(market_info)) market_info = market_info.assign(Date=pd.to_datetime(market_info['Date'])) - if crypto == "ethereum": market_info.loc[market_info["Market Cap"]=="-","Market Cap"]=0 - if crypto == "dogecoin": market_info.loc[market_info["Volume"]=="-","Volume"]=0 + #print(market_info) + #if crypto == "ethereum": market_info.loc[market_info["Market Cap"]=="-","Market Cap"]=0 + #if crypto == "dogecoin": market_info.loc[market_info["Volume"]=="-","Volume"]=0 market_info["Volume"] = market_info["Volume"].astype("int64") market_info.columns = market_info.columns.str.replace("*", "") - print(type(market_info)) - print(crypto + " head: ") - print(market_info.head()) + #print(type(market_info)) + #print(crypto + " head: ") + #print(market_info.head()) kwargs = {'close_off_high': lambda x: 2*(x['High']- x['Close'])/(x['High']-x['Low'])-1, 'volatility': lambda x: (x['High']- x['Low'])/(x['Open'])} market_info = market_info.assign(**kwargs) model_data = market_info[['Date']+[coin+metric for coin in [""] for metric in ['Close','Volume','close_off_high','volatility']]] model_data = model_data.sort_values(by='Date') - print(model_data.head()) + #print(model_data.head()) + print(type(model_data)) return model_data +def getData_Stock(name, period): + info = pd.from_csv(path="./data/"+name+"/"+period+".csv") + return info + def get_sets(crypto, model_data): training_set, test_set = model_data[model_data['Date']<split_date], model_data[model_data['Date']>=split_date] training_set = training_set.drop('Date', 1) @@ -93,15 +100,26 @@ def lstm_type_1(crypto, crypto_short): model_data = getData_CMC(crypto, crypto_short) np.random.seed(202) training_inputs, test_inputs, training_set, test_set = get_sets(crypto, model_data) - model = build_model(training_inputs, output_size=1, neurons=20) + model = build_model(training_inputs, output_size=1, neurons=20, loss="mse") training_outputs = (training_set['Close'][window_len:].values/training_set['Close'][:-window_len].values)-1 history = model.fit(training_inputs, training_outputs, epochs=50, batch_size=1, verbose=2, shuffle=True) +def lstm_type_4(crypto, crypto_short, crypto2, crypto_short2): + model_data = getData_CMC(crypto, crypto_short) + model_data2 = getData_CMC(crypto2, crypto_short2) + np.random.seed(202) + training_inputs, test_inputs, training_set, test_set = get_sets(crypto, model_data) + training_inputs2, test_inputs2, training_set2, test_set2 = get_sets(crypto2, model_data2) + return + model = build_model(training_inputs/training_inputs2, output_size=1, neurons=20, loss="mse") + training_outputs = ((training_set['Close'][window_len:].values)/(training_set['Close'][:-window_len].values))-1 + history = model.fit(training_inputs/training_inputs2, training_outputs, epochs=10, batch_size=1, verbose=2, shuffle=True) + def lstm_type_2(crypto, crypto_short, pred_range, neuron_count): model_data = getData_CMC(crypto, crypto_short) np.random.seed(202) training_inputs, test_inputs, training_set, test_set = get_sets(crypto, model_data) - model = build_model(training_inputs, output_size=pred_range, neurons=neuron_count) + model = build_model(training_inputs, output_size=pred_range, neurons=neuron_count, loss="mse") training_outputs = (training_set['Close'][window_len:].values/training_set['Close'][:-window_len].values)-1 training_outputs = [] for i in range(window_len, len(training_set['Close'])-pred_range): @@ -139,6 +157,7 @@ def premain(argparser): lstm_type_1("ethereum", "ether") #lstm_type_2("ethereum", "ether", 5, 20) #lstm_type_3("ethereum", "ether", 5, 20) + #lstm_type_4("ethereum", "ether", "dogecoin", "doge") #load_models("ethereum", "eth") def main(): diff --git a/stock.py b/stock.py new file mode 100755 index 0000000..6ad60ed --- /dev/null +++ b/stock.py @@ -0,0 +1,62 @@ +#!python +# _*_ coding=utf-8 _*_ + +import argparse +import code +import readline +import signal +import sys +import pandas as pd +import numpy as np +import json +import os +import urllib3 +import time +from keras.models import Sequential +from keras.layers import Activation, Dense +from keras.layers import LSTM +from keras.layers import Dropout +from keras.models import load_model + +def SigHandler_SIGINT(signum, frame): + print() + sys.exit(0) + +class Argparser(object): + def __init__(self): + parser = argparse.ArgumentParser() + parser.add_argument("--string", type=str, help="string") + parser.add_argument("--bool", action="store_true", help="bool", default=False) + parser.add_argument("--dbg", action="store_true", help="debug", default=False) + self.args = parser.parse_args() + +def build_model(train_data): + model = models.Sequential() + model.add(layers.Dense(64, activation="relu", input_shape=(train_data.shape[1],))) + model.add(layers.Dense(64, activation="relu")) + model.add(layers.Dense(1)) + model.compile(optimizer="rmsprop", loss="mse", metrics=["acc"]) + return model + +# write code here +def premain(argparser): + signal.signal(signal.SIGINT, SigHandler_SIGINT) + #here + +def main(): + argparser = Argparser() + if argparser.args.dbg: + try: + premain(argparser) + except Exception as e: + print(e.__doc__) + if e.message: print(e.message) + variables = globals().copy() + variables.update(locals()) + shell = code.InteractiveConsole(variables) + shell.interact(banner="DEBUG REPL") + else: + premain(argparser) + +if __name__ == "__main__": + main() |