diff options
| author | bloodstalker <thabogre@gmail.com> | 2018-11-17 14:35:05 +0000 | 
|---|---|---|
| committer | bloodstalker <thabogre@gmail.com> | 2018-11-17 14:35:05 +0000 | 
| commit | e30c6845c4efc223ef83c2bb1b51098cc7c62805 (patch) | |
| tree | 10060a4e8251f116dfb373fcb039adccda8c0525 | |
| parent | update (diff) | |
| download | seer-e30c6845c4efc223ef83c2bb1b51098cc7c62805.tar.gz seer-e30c6845c4efc223ef83c2bb1b51098cc7c62805.zip | |
update
| -rwxr-xr-x | lstm.py | 34 | 
1 files changed, 30 insertions, 4 deletions
| @@ -20,10 +20,11 @@ from keras.layers import Activation, Dense  from keras.layers import LSTM  from keras.layers import Dropout  from keras.models import load_model +from keras import models +from keras import layers  window_len = 10 -#split_date = "2018-03-01" -split_date = "2017.01.01" +split_date = "2018-03-01"  def SigHandler_SIGINT(signum, frame):      print() @@ -58,7 +59,7 @@ def getData_CMC(crypto, crypto_short):      return model_data  def getData_Stock(name, period): -    info = pd.read_csv("./data/"+name+"/"+period+".csv", encoding="utf-8") +    info = pd.read_csv("./data/"+name+"/"+period+".csv", encoding="utf-16")      return info  def get_sets(crypto, model_data): @@ -98,7 +99,32 @@ def build_model(inputs, output_size, neurons, activ_func="linear", dropout=0.25,      return model  def stock(): -    data = getData_Stock("irxo", "Daily") +    split_date = "2017.01.01" +    model_data = getData_Stock("irxo", "Daily") +    model_data = model_data.sort_values(by='Date') + +    training_set, test_set = model_data[model_data['Date']<split_date], model_data[model_data['Date']>=split_date] +    training_set = training_set.drop('Date', 1) +    test_set = test_set.drop('Date', 1) + +    training_inputs = training_set +    training_outputs = training_set.drop(['Open', 'High', 'Low', 'NTx', 'Volume'], axis=1) +    test_inputs = test_set +    test_outputs = test_set.drop(["Open", "High", "Low", "NTx", "Volume"], axis=1) + +    print(training_set.head) +    print(test_set.head) +    print(training_inputs.shape) +    print(test_inputs.shape) +    print(training_outputs.shape) +    print(test_outputs.shape) + +    model = models.Sequential() +    model.add(layers.Dense(64, activation="relu", input_shape=(training_inputs.shape[1],))) +    model.add(layers.Dense(64, activation="relu")) +    model.add(layers.Dense(1)) +    model.compile(optimizer="rmsprop", loss="mse", metrics=["mae"]) +    history = model.fit(training_inputs, training_outputs, validation_data=(test_inputs, test_outputs), epochs=10, batch_size=1, verbose=2)  def lstm_type_1(crypto, crypto_short):      model_data = getData_CMC(crypto, crypto_short) | 
