aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorterminaldweller <thabogre@gmail.com>2022-01-27 17:51:54 +0000
committerterminaldweller <thabogre@gmail.com>2022-01-27 17:51:54 +0000
commit02c8661250be26dc35b71c7fa9fb0f2eb9890b44 (patch)
tree708839587fb6e16b6e37465e15259461fb0b13fe
parentupdate (diff)
downloadseer-02c8661250be26dc35b71c7fa9fb0f2eb9890b44.tar.gz
seer-02c8661250be26dc35b71c7fa9fb0f2eb9890b44.zip
black and update
-rwxr-xr-xACO.py107
-rwxr-xr-xPSO.py173
-rwxr-xr-xSA.py97
-rwxr-xr-xcnn.py285
-rwxr-xr-xdigester.py90
-rwxr-xr-xlstm.py311
-rwxr-xr-xmarionette.py47
-rwxr-xr-xseer.py165
-rwxr-xr-xstock.py23
-rwxr-xr-xtfann.py127
10 files changed, 1140 insertions, 285 deletions
diff --git a/ACO.py b/ACO.py
new file mode 100755
index 0000000..3ec1ffb
--- /dev/null
+++ b/ACO.py
@@ -0,0 +1,107 @@
+#!/usr/bin/env python3
+import math
+import time
+import random
+
+
+Nodes = [
+ [0, 10, 20, 30, 40],
+ [10, 0, 20, 30, 40],
+ [20, 20, 0, 30, 40],
+ [30, 30, 30, 0, 40],
+ [40, 40, 40, 40, 0],
+]
+
+Pheromone = [
+ [0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0],
+ [0, 0, 0, 0, 0],
+]
+
+
+class Ant:
+ def __init__(self, node):
+ self.node = node
+ self.route = int()
+ self.exclusion_list = list()
+
+ def __repr__(self):
+ return "{node: %s}" % (self.node)
+
+ def __str__(self):
+ return "{node: %s}" % (self.node)
+
+ def nextHop(self):
+ n = math.ceil(random.random() * len(Nodes)) - 1
+ if (
+ n not in self.exclusion_list
+ and n != self.exclusion_list[-1]
+ and Nodes[self.exclusion_list[-1]][n] != 0
+ ):
+ self.exclusion_list.append(n)
+ return n
+ else:
+ if len(self.exclusion_list) == len(Nodes):
+ return None
+ else:
+ self.nextHop()
+
+ def nextHop2(self):
+ pass
+
+ def walk(self):
+ self.exclusion_list.append(self.node)
+ for _ in range(0, len(Nodes)):
+ next = self.nextHop()
+ if next is not None:
+ self.route += Nodes[self.node][next]
+ self.node = next
+
+ def printRoute(self):
+ print(self.exclusion_list)
+
+
+class ACO:
+ def __init__(self, ant_count):
+ self.ant_count = ant_count
+ self.Ants = self.factory()
+
+ def factory(self):
+ result = list()
+ for _ in range(0, self.ant_count):
+ node = math.ceil(random.random() * 5) - 1
+ result.append(Ant(node))
+ return result
+
+ def fitness(self):
+ pass
+
+ def run(self):
+ for ant in self.Ants:
+ ant.walk()
+ ant.printRoute()
+ for i in range(0, len(Nodes) - 1):
+ Pheromone[ant.exclusion_list[i]][ant.exclusion_list[i + 1]] = (
+ 1 / ant.route
+ )
+
+
+def main():
+ random.seed(time.time())
+ rho = 0
+ alpha = 1
+ beta = 1
+ aco = ACO(5)
+ # for ant in aco.Ants:
+ # print("ant:", ant)
+ aco.run()
+ for i in range(0, len(Pheromone)):
+ for j in range(0, len(Pheromone)):
+ print(Pheromone[i][j], end=" ")
+ print()
+
+
+if __name__ == "__main__":
+ main()
diff --git a/PSO.py b/PSO.py
new file mode 100755
index 0000000..0d019cd
--- /dev/null
+++ b/PSO.py
@@ -0,0 +1,173 @@
+#!/usr/bin/env python3
+import time
+import random
+
+
+class Particle:
+ def __init__(self, x, y, z):
+ self.Pbest_x = 0
+ self.Pbest_y = 0
+ self.Pbest_z = 0
+ self.x = x
+ self.y = y
+ self.z = z
+ self.x_k1 = 0
+ self.y_k1 = 0
+ self.z_k1 = 0
+ self.V_x = 0
+ self.V_y = 0
+ self.V_z = 0
+ self.V_xk1 = 0
+ self.V_yk1 = 0
+ self.V_zk1 = 0
+
+ def __repr__(self):
+ return (
+ "{x: %s , y: %s, z: %s, Pbest_x: %s, Pbest_y: %s, Pbest_z: %s}\n"
+ % (
+ self.x,
+ self.y,
+ self.z,
+ self.Pbest_x,
+ self.Pbest_y,
+ self.Pbest_z,
+ )
+ )
+
+ def __str__(self):
+ return (
+ "{x: %s , y: %s, z: %s, Pbest_x: %s, Pbest_y: %s, Pbest_z: %s}\n"
+ % (
+ self.x,
+ self.y,
+ self.z,
+ self.Pbest_x,
+ self.Pbest_y,
+ self.Pbest_z,
+ )
+ )
+
+ def update_X(self):
+ self.x = self.x + self.V_xk1
+ self.y = self.y + self.V_yk1
+ self.z = self.z + self.V_zk1
+
+ def update_V(self, w, c1, c2, Gbest_x, Gbest_y, Gbest_z):
+ rand1 = random.random()
+ rand2 = random.random()
+ self.V_xk1 = (
+ w * self.V_x
+ + c1 * rand1 * (self.Pbest_x - self.x)
+ + c2 * rand2 * (Gbest_x - self.x)
+ )
+ self.V_yk1 = (
+ w * self.V_y
+ + c1 * rand1 * (self.Pbest_y - self.y)
+ + c2 * rand2 * (Gbest_y - self.y)
+ )
+ self.V_zk1 = (
+ w * self.V_z
+ + c1 * rand1 * (self.Pbest_z - self.z)
+ + c2 * rand2 * (Gbest_z - self.z)
+ )
+
+ def update_Pbest(self, x, y, z: float):
+ self.Pbest_x = x
+ self.Pbest_y = y
+ self.Pbest_z = z
+
+ def doRound(self, w, c1, c2, Gbest_x, Gbest_y, Gbest_z, fitness):
+ fitness_x = fitness(self.x, self.y, self.z)
+ self.update_V(w, c1, c2, Gbest_x, Gbest_y, Gbest_z)
+ self.update_X()
+ if abs(fitness(self.Pbest_x, self.Pbest_y, self.Pbest_z)) > abs(
+ fitness_x
+ ):
+ self.update_Pbest(self.x, self.y, self.z)
+
+
+class PSO:
+ def __init__(self, w, c1, c2, particle_count):
+ self.Gbest_x = 0
+ self.Gbest_y = 0
+ self.Gbest_z = 0
+ self.particle_count = particle_count
+ self.Particles = self.factory()
+ self.w = w
+ self.c1 = c1
+ self.c2 = c2
+
+ def factory(self):
+ result = list()
+ for _ in range(1, self.particle_count):
+ x = (
+ random.random() * 10
+ if random.random() > 0.5
+ else -random.random() * 10
+ )
+ y = (
+ random.random() * 10
+ if random.random() > 0.5
+ else -random.random() * 10
+ )
+ z = (
+ random.random() * 10
+ if random.random() > 0.5
+ else -random.random() * 10
+ )
+ result.append(Particle(x, y, z))
+ return result
+
+ def fitness(self, x, y, z: float):
+ return (
+ (x ** 5) - ((x ** 2) * y * z) + (z * x) + (y ** 2) - (z ** 3) - 10
+ )
+
+ def doRround(self):
+ roundBest_x = float()
+ roundBest_y = float()
+ roundBest_z = float()
+ for particle in self.Particles:
+ if abs(self.fitness(roundBest_x, roundBest_y, roundBest_z)) > abs(
+ self.fitness(particle.x, particle.y, particle.z)
+ ):
+ roundBest_x = particle.x
+ roundBest_y = particle.y
+ roundBest_z = particle.z
+ self.Gbest_x = roundBest_x
+ self.Gbest_y = roundBest_y
+ self.Gbest_z = roundBest_z
+ for particle in self.Particles:
+ particle.doRound(
+ self.w,
+ self.c1,
+ self.c2,
+ self.Gbest_x,
+ self.Gbest_y,
+ self.Gbest_z,
+ self.fitness,
+ )
+
+ def printGlobalBest(self):
+ print(
+ "x: %s, y: %s, z: %s, fitness: %s"
+ % (
+ self.Gbest_x,
+ self.Gbest_y,
+ self.Gbest_z,
+ self.fitness(self.Gbest_x, self.Gbest_y, self.Gbest_z),
+ ),
+ )
+
+
+def main():
+ random.seed(time.time())
+ round_count = 10
+ pso = PSO(5, 1.5, 1.5, 50)
+ for _ in range(1, round_count):
+ pso.doRround()
+ pso.printGlobalBest()
+
+
+if __name__ == "__main__":
+ main()
diff --git a/SA.py b/SA.py
new file mode 100755
index 0000000..24b9a7f
--- /dev/null
+++ b/SA.py
@@ -0,0 +1,97 @@
+#!/usr/bin/env python3
+from random import seed, random
+from time import time
+import math
+
+
+class X:
+ def __init__(self, x: float, y: float, z: float):
+ self.x_now = 0
+ self.y_now = 0
+ self.z_now = 0
+ self.x_k = x
+ self.y_k = y
+ self.z_k = z
+ self.x_k1 = 0
+ self.y_k1 = 0
+ self.z_k1 = 0
+ self.k = 0
+
+ def neighbour(self):
+ self.X_k_to_now()
+ self.x_now = self.x_now + (
+ random() / 100 if random() > 0.5 else -random() / 100
+ )
+ self.y_now = self.y_now + (
+ random() / 100 if random() > 0.5 else -random() / 100
+ )
+ self.z_now = self.z_now + (
+ random() / 100 if random() > 0.5 else -random() / 100
+ )
+ self.k = self.k + 1
+
+ def function(self, x: float, y: float, z: float):
+ return (
+ (x ** 5) - ((x ** 2) * y * z) + (z * x) + (y ** 2) - (z ** 3) - 10
+ )
+
+ def X_now(self):
+ return self.function(self.x_now, self.y_now, self.z_now)
+
+ def X_k(self):
+ return self.function(self.x_k, self.y_k, self.z_k)
+
+ def X_k_to_now(self):
+ self.x_now = self.x_k
+ self.y_now = self.y_k
+ self.z_now = self.z_k
+
+ def X_now_to_k1(self):
+ self.x_k1 = self.x_now
+ self.y_k1 = self.y_now
+ self.z_k1 = self.z_now
+
+ def X_k_to_k1(self):
+ self.x_k1 = self.x_k
+ self.y_k1 = self.y_k
+ self.z_k1 = self.z_k
+
+ def X_k1_to_k(self):
+ self.x_k = self.x_k1
+ self.y_k = self.y_k1
+ self.z_k = self.z_k1
+
+
+def SA():
+ K_max = 600
+ T_zero = 30
+ alpha = 0.90
+ alpha_step = 20
+ x = X(1, 0, -1)
+ T = T_zero
+ seed(time())
+ for k in range(1, K_max):
+ x.neighbour()
+ if x.X_now() <= x.X_k():
+ x.X_now_to_k1()
+ else:
+ p = math.e ** ((-(x.X_now() - x.X_k())) / T)
+ seed(time())
+ r = random()
+ if p >= r:
+ x.X_now_to_k1()
+ else:
+ x.X_k_to_k1()
+ if k % alpha_step == 0:
+ T = T * alpha
+ x.X_k1_to_k()
+ print(x.x_k, x.y_k, x.z_k)
+ print("k=", x.X_k())
+
+
+def main():
+ SA()
+
+
+if __name__ == "__main__":
+ main()
diff --git a/cnn.py b/cnn.py
index 23e450f..bd0cb78 100755
--- a/cnn.py
+++ b/cnn.py
@@ -34,18 +34,25 @@ import keras
from keras import optimizers
import matplotlib.pyplot as plt
+
def SigHandler_SIGINT(signum, frame):
print()
sys.exit(0)
+
class Argparser(object):
def __init__(self):
parser = argparse.ArgumentParser()
parser.add_argument("--string", type=str, help="string")
- parser.add_argument("--bool", action="store_true", help="bool", default=False)
- parser.add_argument("--dbg", action="store_true", help="debug", default=False)
+ parser.add_argument(
+ "--bool", action="store_true", help="bool", default=False
+ )
+ parser.add_argument(
+ "--dbg", action="store_true", help="debug", default=False
+ )
self.args = parser.parse_args()
+
class PastSampler(object):
def __init__(self, N, K, sliding_window=True):
self.N = N
@@ -55,23 +62,30 @@ class PastSampler(object):
def transform(self, A):
M = self.N + self.K
if self.sliding_window:
- I = np.arange(M) + np.arange(A.shape[0] - M + 1).reshape(-1,1)
+ I = np.arange(M) + np.arange(A.shape[0] - M + 1).reshape(-1, 1)
else:
- if A.shape[0]%M == 0:
- I = np.arange(M) + np.arange(0, A.shape[0], M).reshape(-1,1)
+ if A.shape[0] % M == 0:
+ I = np.arange(M) + np.arange(0, A.shape[0], M).reshape(-1, 1)
else:
- I = np.arange(M) + np.arange(0, A.shape[0] - M, M).reshape(-1,1)
+ I = np.arange(M) + np.arange(0, A.shape[0] - M, M).reshape(
+ -1, 1
+ )
- B = A[I].reshape(-1, M*A.shape[1], A.shape[2])
- ci = self.N*A.shape[1]
+ B = A[I].reshape(-1, M * A.shape[1], A.shape[2])
+ ci = self.N * A.shape[1]
return B[:, :ci], B[:, ci:]
+
def getData(symbol_str):
data_file = Path("./cnn/" + symbol_str + ".csv")
- original_columns =["close", "date", "high", "low", "open"]
+ original_columns = ["close", "date", "high", "low", "open"]
new_columns = ["Close", "Timestamp", "High", "Low", "Open"]
columns = ["Close"]
- url = "https://poloniex.com/public?command=returnChartData&currencyPair=USDT_" + symbol_str + "&start=1356998100&end=9999999999&period=300"
+ url = (
+ "https://poloniex.com/public?command=returnChartData&currencyPair=USDT_"
+ + symbol_str
+ + "&start=1356998100&end=9999999999&period=300"
+ )
r = requests.get(url)
d = json.loads(r.content.decode("utf-8"))
df = pd.DataFrame(d)
@@ -85,15 +99,16 @@ def getData(symbol_str):
original_df = pd.read_csv(data_file).loc[:, columns]
return df, original_df, time_stamps
+
def Scaler(df, original_df, time_stamps, symbol_str):
- file_name="./cnn/" + symbol_str + "_close.h5"
+ file_name = "./cnn/" + symbol_str + "_close.h5"
scaler = MinMaxScaler()
- columns= ["Close"]
+ columns = ["Close"]
for c in columns:
- df[c] = scaler.fit_transform(df[c].values.reshape(-1,1))
- A = np.array(df)[:,None,:]
- original_A = np.array(original_df)[:,None,:]
- time_stamps = np.array(time_stamps)[:,None,None]
+ df[c] = scaler.fit_transform(df[c].values.reshape(-1, 1))
+ A = np.array(df)[:, None, :]
+ original_A = np.array(original_df)[:, None, :]
+ time_stamps = np.array(time_stamps)[:, None, None]
NPS, NFS = 256, 16
ps = PastSampler(NPS, NFS, sliding_window=False)
B, Y = ps.transform(A)
@@ -109,15 +124,16 @@ def Scaler(df, original_df, time_stamps, symbol_str):
f.create_dataset("original_inputs", data=original_B)
f.create_dataset("original_outputs", data=original_Y)
+
def cnn_type_1(symbol_str):
df, original_df, time_stamps = getData(symbol_str)
Scaler(df, original_df, time_stamps, symbol_str)
# run on gpu
- '''
+ """
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
- '''
+ """
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
@@ -134,21 +150,29 @@ def cnn_type_1(symbol_str):
epochs = 100
- #split training validation
- training_size = int(0.8* datas.shape[0])
- training_datas = datas[:training_size,:]
- training_labels = labels[:training_size,:]
- validation_datas = datas[training_size:,:]
- validation_labels = labels[training_size:,:]
+ # split training validation
+ training_size = int(0.8 * datas.shape[0])
+ training_datas = datas[:training_size, :]
+ training_labels = labels[:training_size, :]
+ validation_datas = datas[training_size:, :]
+ validation_labels = labels[training_size:, :]
model = Sequential()
# 2 Layers
- model.add(Conv1D(activation='relu', input_shape=(step_size, nb_features), strides=3, filters=8, kernel_size=20))
+ model.add(
+ Conv1D(
+ activation="relu",
+ input_shape=(step_size, nb_features),
+ strides=3,
+ filters=8,
+ kernel_size=20,
+ )
+ )
model.add(Dropout(0.5))
- model.add(Conv1D( strides=4, filters=nb_features, kernel_size=16))
+ model.add(Conv1D(strides=4, filters=nb_features, kernel_size=16))
- '''
+ """
# 3 Layers
model.add(Conv1D(activation='relu', input_shape=(step_size, nb_features), strides=3, filters=8, kernel_size=8))
#model.add(LeakyReLU())
@@ -168,10 +192,27 @@ def cnn_type_1(symbol_str):
#model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Conv1D( strides=2, filters=nb_features, kernel_size=2))
- '''
+ """
+
+ model.compile(loss="mse", optimizer="adam")
+ model.fit(
+ training_datas,
+ training_labels,
+ verbose=1,
+ batch_size=batch_size,
+ validation_data=(validation_datas, validation_labels),
+ epochs=epochs,
+ callbacks=[
+ CSVLogger(output_file_name + ".csv", append=True),
+ ModelCheckpoint(
+ output_file_name + "-{epoch:02d}-{val_loss:.5f}.hdf5",
+ monitor="val_loss",
+ verbose=1,
+ mode="min",
+ ),
+ ],
+ )
- model.compile(loss='mse', optimizer='adam')
- model.fit(training_datas, training_labels,verbose=1, batch_size=batch_size,validation_data=(validation_datas,validation_labels), epochs = epochs, callbacks=[CSVLogger(output_file_name+'.csv', append=True),ModelCheckpoint(output_file_name+'-{epoch:02d}-{val_loss:.5f}.hdf5', monitor='val_loss', verbose=1,mode='min')])
def lstm_type_cnn_1(symbol_str, kind):
df, original_df, time_stamps = getData(symbol_str)
@@ -187,35 +228,65 @@ def lstm_type_cnn_1(symbol_str, kind):
set_session(tf.Session(config=config))
with h5py.File("".join("./cnn/" + symbol_str + "_close.h5"), "r") as hf:
- datas = hf['inputs'].value
- labels = hf['outputs'].value
+ datas = hf["inputs"].value
+ labels = hf["outputs"].value
step_size = datas.shape[1]
- units= 50
+ units = 50
second_units = 30
batch_size = 8
nb_features = datas.shape[2]
epochs = 100
- output_size=16
+ output_size = 16
output_file_name = "cnn/" + symbol_str + "_CNN_LSTM_2_relu"
- #split training validation
- training_size = int(0.8* datas.shape[0])
- training_datas = datas[:training_size,:]
- training_labels = labels[:training_size,:,0]
- validation_datas = datas[training_size:,:]
- validation_labels = labels[training_size:,:,0]
-
- #build model
+ # split training validation
+ training_size = int(0.8 * datas.shape[0])
+ training_datas = datas[:training_size, :]
+ training_labels = labels[:training_size, :, 0]
+ validation_datas = datas[training_size:, :]
+ validation_labels = labels[training_size:, :, 0]
+
+ # build model
model = Sequential()
if kind == "GRU":
- model.add(GRU(units=units,activation='tanh', input_shape=(step_size,nb_features),return_sequences=False))
+ model.add(
+ GRU(
+ units=units,
+ activation="tanh",
+ input_shape=(step_size, nb_features),
+ return_sequences=False,
+ )
+ )
elif kind == "LSTM":
- model.add(LSTM(units=units,activation='tanh', input_shape=(step_size,nb_features),return_sequences=False))
+ model.add(
+ LSTM(
+ units=units,
+ activation="tanh",
+ input_shape=(step_size, nb_features),
+ return_sequences=False,
+ )
+ )
model.add(Dropout(0.8))
model.add(Dense(output_size))
model.add(LeakyReLU())
- model.compile(loss='mse', optimizer='adam')
- model.fit(training_datas, training_labels, batch_size=batch_size,validation_data=(validation_datas,validation_labels), epochs = epochs, callbacks=[CSVLogger(output_file_name+'.csv', append=True),ModelCheckpoint(output_file_name+'-{epoch:02d}-{val_loss:.5f}.hdf5', monitor='val_loss', verbose=1,mode='min')])
+ model.compile(loss="mse", optimizer="adam")
+ model.fit(
+ training_datas,
+ training_labels,
+ batch_size=batch_size,
+ validation_data=(validation_datas, validation_labels),
+ epochs=epochs,
+ callbacks=[
+ CSVLogger(output_file_name + ".csv", append=True),
+ ModelCheckpoint(
+ output_file_name + "-{epoch:02d}-{val_loss:.5f}.hdf5",
+ monitor="val_loss",
+ verbose=1,
+ mode="min",
+ ),
+ ],
+ )
+
def load_cnn_type_1(symbol_str, vis_year, vis_month):
df, original_df, time_stamps = getData(symbol_str)
@@ -227,83 +298,107 @@ def load_cnn_type_1(symbol_str, vis_year, vis_month):
"""
with h5py.File("".join("./cnn/" + symbol_str + "_close.h5"), "r") as hf:
- datas = hf['inputs'].value
- labels = hf['outputs'].value
- input_times = hf['input_times'].value
- output_times = hf['output_times'].value
- original_inputs = hf['original_inputs'].value
- original_outputs = hf['original_outputs'].value
- original_datas = hf['original_datas'].value
-
- scaler=MinMaxScaler()
- #split training validation
- training_size = int(0.8* datas.shape[0])
- training_datas = datas[:training_size,:,:]
- training_labels = labels[:training_size,:,:]
- validation_datas = datas[training_size:,:,:]
- validation_labels = labels[training_size:,:,:]
- validation_original_outputs = original_outputs[training_size:,:,:]
- validation_original_inputs = original_inputs[training_size:,:,:]
- validation_input_times = input_times[training_size:,:,:]
- validation_output_times = output_times[training_size:,:,:]
-
- ground_true = np.append(validation_original_inputs,validation_original_outputs, axis=1)
- ground_true_times = np.append(validation_input_times,validation_output_times, axis=1)
+ datas = hf["inputs"].value
+ labels = hf["outputs"].value
+ input_times = hf["input_times"].value
+ output_times = hf["output_times"].value
+ original_inputs = hf["original_inputs"].value
+ original_outputs = hf["original_outputs"].value
+ original_datas = hf["original_datas"].value
+
+ scaler = MinMaxScaler()
+ # split training validation
+ training_size = int(0.8 * datas.shape[0])
+ training_datas = datas[:training_size, :, :]
+ training_labels = labels[:training_size, :, :]
+ validation_datas = datas[training_size:, :, :]
+ validation_labels = labels[training_size:, :, :]
+ validation_original_outputs = original_outputs[training_size:, :, :]
+ validation_original_inputs = original_inputs[training_size:, :, :]
+ validation_input_times = input_times[training_size:, :, :]
+ validation_output_times = output_times[training_size:, :, :]
+
+ ground_true = np.append(
+ validation_original_inputs, validation_original_outputs, axis=1
+ )
+ ground_true_times = np.append(
+ validation_input_times, validation_output_times, axis=1
+ )
step_size = datas.shape[1]
- batch_size= 8
+ batch_size = 8
nb_features = datas.shape[2]
model = Sequential()
# 2 layers
- model.add(Conv1D(activation='relu', input_shape=(step_size, nb_features), strides=3, filters=8, kernel_size=20))
+ model.add(
+ Conv1D(
+ activation="relu",
+ input_shape=(step_size, nb_features),
+ strides=3,
+ filters=8,
+ kernel_size=20,
+ )
+ )
# model.add(LeakyReLU())
model.add(Dropout(0.25))
- model.add(Conv1D( strides=4, filters=nb_features, kernel_size=16))
+ model.add(Conv1D(strides=4, filters=nb_features, kernel_size=16))
model.load_weights("cnn/" + symbol_str + "_CNN_2_relu-76-0.00036.hdf5")
- model.compile(loss='mse', optimizer='adam')
+ model.compile(loss="mse", optimizer="adam")
predicted = model.predict(validation_datas)
predicted_inverted = []
for i in range(original_datas.shape[1]):
scaler.fit(original_datas[:, i].reshape(-1, 1))
- predicted_inverted.append(scaler.inverse_transform(predicted[:,:,i]))
+ predicted_inverted.append(scaler.inverse_transform(predicted[:, :, i]))
print(np.array(predicted_inverted).shape)
- #get only the close data
- ground_true = ground_true[:,:,0].reshape(-1)
+ # get only the close data
+ ground_true = ground_true[:, :, 0].reshape(-1)
ground_true_times = ground_true_times.reshape(-1)
- ground_true_times = pd.to_datetime(ground_true_times, unit='s')
+ ground_true_times = pd.to_datetime(ground_true_times, unit="s")
# since we are appending in the first dimension
- predicted_inverted = np.array(predicted_inverted)[0,:,:].reshape(-1)
+ predicted_inverted = np.array(predicted_inverted)[0, :, :].reshape(-1)
print(np.array(predicted_inverted).shape)
- validation_output_times = pd.to_datetime(validation_output_times.reshape(-1), unit='s')
+ validation_output_times = pd.to_datetime(
+ validation_output_times.reshape(-1), unit="s"
+ )
ground_true_df = pd.DataFrame()
- ground_true_df['times'] = ground_true_times
- ground_true_df['value'] = ground_true
+ ground_true_df["times"] = ground_true_times
+ ground_true_df["value"] = ground_true
prediction_df = pd.DataFrame()
- prediction_df['times'] = validation_output_times
- prediction_df['value'] = predicted_inverted
-
- prediction_df = prediction_df.loc[(prediction_df["times"].dt.year == vis_year )&(prediction_df["times"].dt.month > vis_month ),: ]
- ground_true_df = ground_true_df.loc[(ground_true_df["times"].dt.year == vis_year )&(ground_true_df["times"].dt.month > vis_month ),:]
-
- plt.figure(figsize=(20,10))
- plt.plot(ground_true_df.times,ground_true_df.value, label = 'Actual')
- plt.plot(prediction_df.times,prediction_df.value,'ro', label='Predicted')
- plt.legend(loc='upper left')
+ prediction_df["times"] = validation_output_times
+ prediction_df["value"] = predicted_inverted
+
+ prediction_df = prediction_df.loc[
+ (prediction_df["times"].dt.year == vis_year)
+ & (prediction_df["times"].dt.month > vis_month),
+ :,
+ ]
+ ground_true_df = ground_true_df.loc[
+ (ground_true_df["times"].dt.year == vis_year)
+ & (ground_true_df["times"].dt.month > vis_month),
+ :,
+ ]
+
+ plt.figure(figsize=(20, 10))
+ plt.plot(ground_true_df.times, ground_true_df.value, label="Actual")
+ plt.plot(prediction_df.times, prediction_df.value, "ro", label="Predicted")
+ plt.legend(loc="upper left")
plt.show()
+
# write code here
def premain(argparser):
signal.signal(signal.SIGINT, SigHandler_SIGINT)
- #here
- #cnn_type_1("ETH")
- #lstm_type_cnn_1("ETH", "GRU")
+ # here
+ # cnn_type_1("ETH")
+ # lstm_type_cnn_1("ETH", "GRU")
load_cnn_type_1("ETH", 2018, 4)
+
def main():
argparser = Argparser()
if argparser.args.dbg:
@@ -311,7 +406,8 @@ def main():
premain(argparser)
except Exception as e:
print(e.__doc__)
- if e.message: print(e.message)
+ if e.message:
+ print(e.message)
variables = globals().copy()
variables.update(locals())
shell = code.InteractiveConsole(variables)
@@ -319,5 +415,6 @@ def main():
else:
premain(argparser)
+
if __name__ == "__main__":
main()
diff --git a/digester.py b/digester.py
index 0c17b1c..9f7bff9 100755
--- a/digester.py
+++ b/digester.py
@@ -17,37 +17,67 @@ from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import GaussianNB, MultinomialNB
from sklearn.svm import SVC
+
def SigHandler_SIGINT(signum, frame):
print()
sys.exit(0)
+
class Argparser(object):
def __init__(self):
parser = argparse.ArgumentParser()
parser.add_argument("--string", type=str, help="string")
- parser.add_argument("--bool", action="store_true", help="bool", default=False)
- parser.add_argument("--dbg", action="store_true", help="debug", default=False)
+ parser.add_argument(
+ "--bool", action="store_true", help="bool", default=False
+ )
+ parser.add_argument(
+ "--dbg", action="store_true", help="debug", default=False
+ )
self.args = parser.parse_args()
+
# write code here
def premain(argparser):
signal.signal(signal.SIGINT, SigHandler_SIGINT)
- #here
- dataframe = pd.read_csv('/tmp/features.csv')
+ # here
+ dataframe = pd.read_csv("/tmp/features.csv")
dataframe.head()
y = dataframe.target
- X = dataframe.drop(['target'], axis=1)
+ X = dataframe.drop(["target"], axis=1)
- corpus = X['attr']
+ corpus = X["attr"]
vc = CountVectorizer()
vc.fit(corpus)
- numeric_features = pd.concat([X.drop(['attr'], axis=1), pd.DataFrame(vc.transform(corpus).toarray(), columns=vc.vocabulary_)], axis=1)
+ numeric_features = pd.concat(
+ [
+ X.drop(["attr"], axis=1),
+ pd.DataFrame(
+ vc.transform(corpus).toarray(), columns=vc.vocabulary_
+ ),
+ ],
+ axis=1,
+ )
numeric_features.head()
- plt.scatter(dataframe.index, dataframe.target, color='red', label='target')
- plt.scatter(numeric_features.index, numeric_features.depth, color='green', label='depth')
- plt.scatter(numeric_features.index, numeric_features.text_ratio, color='blue', label='text_ratio')
- plt.scatter(numeric_features.index, numeric_features.alink_text_ratio, color='skyblue', label='alink_text_ratio')
+ plt.scatter(dataframe.index, dataframe.target, color="red", label="target")
+ plt.scatter(
+ numeric_features.index,
+ numeric_features.depth,
+ color="green",
+ label="depth",
+ )
+ plt.scatter(
+ numeric_features.index,
+ numeric_features.text_ratio,
+ color="blue",
+ label="text_ratio",
+ )
+ plt.scatter(
+ numeric_features.index,
+ numeric_features.alink_text_ratio,
+ color="skyblue",
+ label="alink_text_ratio",
+ )
plt.legend(loc=(1, 0))
plt.show()
scaler = preprocessing.StandardScaler()
@@ -56,23 +86,43 @@ def premain(argparser):
# clf = MultinomialNB()
# clf = RandomForestClassifier()
- clf = SVC(C=1, kernel='poly', probability=True)
+ clf = SVC(C=1, kernel="poly", probability=True)
clf.fit(scaled_X, y)
predicted_index = clf.predict(scaled_X).tolist().index(True)
scaled_X = scaler.transform(numeric_features)
pred_y = clf.predict(scaled_X)
- print pd.DataFrame(clf.predict_log_proba(scaled_X),columns=clf.classes_)
- print 'Number of mispredicted out of %d is %d (%.2f%%)' % (y.shape[0], (y!=pred_y).sum(), (y!=pred_y).sum()*100.0/y.shape[0])
- print
- print 'Predicted rows:'
- print dataframe[pred_y].drop(['text_ratio', 'alink_text_ratio', 'contain_title'], axis=1).merge(pd.DataFrame(clf.predict_log_proba(scaled_X)[pred_y],columns=clf.classes_, index=dataframe[pred_y].index), left_index=True, right_index=True)
- print
+ print(pd.DataFrame(clf.predict_log_proba(scaled_X), columns=clf.classes_))
+ print(
+ "Number of mispredicted out of %d is %d (%.2f%%)"
+ % (
+ y.shape[0],
+ (y != pred_y).sum(),
+ (y != pred_y).sum() * 100.0 / y.shape[0],
+ )
+ )
+ print()
+ print("Predicted rows:")
+ print(
+ dataframe[pred_y]
+ .drop(["text_ratio", "alink_text_ratio", "contain_title"], axis=1)
+ .merge(
+ pd.DataFrame(
+ clf.predict_log_proba(scaled_X)[pred_y],
+ columns=clf.classes_,
+ index=dataframe[pred_y].index,
+ ),
+ left_index=True,
+ right_index=True,
+ )
+ )
+ print()
# print 'Acutual rows:'
# print dataframe[dataframe.target]
+
def main():
argparser = Argparser()
if argparser.args.dbg:
@@ -80,7 +130,8 @@ def main():
premain(argparser)
except Exception as e:
print(e.__doc__)
- if e.message: print(e.message)
+ if e.message:
+ print(e.message)
variables = globals().copy()
variables.update(locals())
shell = code.InteractiveConsole(variables)
@@ -88,5 +139,6 @@ def main():
else:
premain(argparser)
+
if __name__ == "__main__":
main()
diff --git a/lstm.py b/lstm.py
index 935a8c2..7d65552 100755
--- a/lstm.py
+++ b/lstm.py
@@ -1,9 +1,9 @@
#!python
# _*_ coding=utf-8 _*_
-#original source:https://github.com/dashee87/blogScripts/blob/master/Jupyter/2017-11-20-predicting-cryptocurrency-prices-with-deep-learning.ipynb
+# original source:https://github.com/dashee87/blogScripts/blob/master/Jupyter/2017-11-20-predicting-cryptocurrency-prices-with-deep-learning.ipynb
-#@#!pip install lxml
-#@#!mkdir lstm-models
+# @#!pip install lxml
+# @#!mkdir lstm-models
import argparse
import code
import readline
@@ -26,70 +26,124 @@ from keras import layers
window_len = 10
split_date = "2018-03-01"
+
def SigHandler_SIGINT(signum, frame):
print()
sys.exit(0)
+
class Argparser(object):
def __init__(self):
parser = argparse.ArgumentParser()
parser.add_argument("--string", type=str, help="string")
- parser.add_argument("--bool", action="store_true", help="bool", default=False)
- parser.add_argument("--dbg", action="store_true", help="debug", default=False)
+ parser.add_argument(
+ "--bool", action="store_true", help="bool", default=False
+ )
+ parser.add_argument(
+ "--dbg", action="store_true", help="debug", default=False
+ )
self.args = parser.parse_args()
+
def getData_CMC(crypto, crypto_short):
- market_info = pd.read_html("https://coinmarketcap.com/currencies/"+crypto+"/historical-data/?start=20160428&end="+time.strftime("%Y%m%d"))[0]
+ market_info = pd.read_html(
+ "https://coinmarketcap.com/currencies/"
+ + crypto
+ + "/historical-data/?start=20160428&end="
+ + time.strftime("%Y%m%d")
+ )[0]
print(type(market_info))
- market_info = market_info.assign(Date=pd.to_datetime(market_info['Date']))
- #print(market_info)
- #if crypto == "ethereum": market_info.loc[market_info["Market Cap"]=="-","Market Cap"]=0
- #if crypto == "dogecoin": market_info.loc[market_info["Volume"]=="-","Volume"]=0
+ market_info = market_info.assign(Date=pd.to_datetime(market_info["Date"]))
+ # print(market_info)
+ # if crypto == "ethereum": market_info.loc[market_info["Market Cap"]=="-","Market Cap"]=0
+ # if crypto == "dogecoin": market_info.loc[market_info["Volume"]=="-","Volume"]=0
market_info["Volume"] = market_info["Volume"].astype("int64")
market_info.columns = market_info.columns.str.replace("*", "")
- #print(type(market_info))
- #print(crypto + " head: ")
- #print(market_info.head())
- kwargs = {'close_off_high': lambda x: 2*(x['High']- x['Close'])/(x['High']-x['Low'])-1, 'volatility': lambda x: (x['High']- x['Low'])/(x['Open'])}
+ # print(type(market_info))
+ # print(crypto + " head: ")
+ # print(market_info.head())
+ kwargs = {
+ "close_off_high": lambda x: 2
+ * (x["High"] - x["Close"])
+ / (x["High"] - x["Low"])
+ - 1,
+ "volatility": lambda x: (x["High"] - x["Low"]) / (x["Open"]),
+ }
market_info = market_info.assign(**kwargs)
- model_data = market_info[['Date']+[coin+metric for coin in [""] for metric in ['Close','Volume','close_off_high','volatility']]]
- model_data = model_data.sort_values(by='Date')
- #print(model_data.head())
+ model_data = market_info[
+ ["Date"]
+ + [
+ coin + metric
+ for coin in [""]
+ for metric in ["Close", "Volume", "close_off_high", "volatility"]
+ ]
+ ]
+ model_data = model_data.sort_values(by="Date")
+ # print(model_data.head())
print(type(model_data))
return model_data
+
def getData_Stock(name, period):
- info = pd.read_csv("./data/"+name+"/"+period+".csv", encoding="utf-16")
+ info = pd.read_csv(
+ "./data/" + name + "/" + period + ".csv", encoding="utf-16"
+ )
return info
+
def get_sets(crypto, model_data):
- training_set, test_set = model_data[model_data['Date']<split_date], model_data[model_data['Date']>=split_date]
- training_set = training_set.drop('Date', 1)
- test_set = test_set.drop('Date', 1)
- norm_cols = [coin+metric for coin in [] for metric in ['Close', 'Volume']]
+ training_set, test_set = (
+ model_data[model_data["Date"] < split_date],
+ model_data[model_data["Date"] >= split_date],
+ )
+ training_set = training_set.drop("Date", 1)
+ test_set = test_set.drop("Date", 1)
+ norm_cols = [
+ coin + metric for coin in [] for metric in ["Close", "Volume"]
+ ]
LSTM_training_inputs = []
for i in range(len(training_set) - window_len):
- temp_set = training_set[i:(i+window_len)].copy()
+ temp_set = training_set[i : (i + window_len)].copy()
for col in norm_cols:
- temp_set.loc[:, col] = temp_set[col]/temp_set[col].iloc[0] - 1
+ temp_set.loc[:, col] = temp_set[col] / temp_set[col].iloc[0] - 1
LSTM_training_inputs.append(temp_set)
- LSTM_training_outputs = (training_set["Close"][window_len:].values/training_set["Close"][:-window_len].values) - 1
+ LSTM_training_outputs = (
+ training_set["Close"][window_len:].values
+ / training_set["Close"][:-window_len].values
+ ) - 1
LSTM_test_inputs = []
- for i in range(len(test_set)-window_len):
- temp_set = test_set[i:(i+window_len)].copy()
+ for i in range(len(test_set) - window_len):
+ temp_set = test_set[i : (i + window_len)].copy()
for col in norm_cols:
- temp_set.loc[:, col] = temp_set[col]/temp_set[col].iloc[0] - 1
+ temp_set.loc[:, col] = temp_set[col] / temp_set[col].iloc[0] - 1
LSTM_test_inputs.append(temp_set)
- LSTM_test_outputs = (test_set['Close'][window_len:].values/test_set['Close'][:-window_len].values)-1
+ LSTM_test_outputs = (
+ test_set["Close"][window_len:].values
+ / test_set["Close"][:-window_len].values
+ ) - 1
print(LSTM_training_inputs[0])
- LSTM_training_inputs = [np.array(LSTM_training_input) for LSTM_training_input in LSTM_training_inputs]
+ LSTM_training_inputs = [
+ np.array(LSTM_training_input)
+ for LSTM_training_input in LSTM_training_inputs
+ ]
LSTM_training_inputs = np.array(LSTM_training_inputs)
- LSTM_test_inputs = [np.array(LSTM_test_inputs) for LSTM_test_inputs in LSTM_test_inputs]
+ LSTM_test_inputs = [
+ np.array(LSTM_test_inputs) for LSTM_test_inputs in LSTM_test_inputs
+ ]
LSTM_test_inputs = np.array(LSTM_test_inputs)
return LSTM_training_inputs, LSTM_test_inputs, training_set, test_set
-def build_model(inputs, output_size, neurons, activ_func="linear", dropout=0.25, loss="mae", optimizer="adam"):
+
+def build_model(
+ inputs,
+ output_size,
+ neurons,
+ activ_func="linear",
+ dropout=0.25,
+ loss="mae",
+ optimizer="adam",
+):
model = Sequential()
model.add(LSTM(neurons, input_shape=(inputs.shape[1], inputs.shape[2])))
model.add(Dropout(dropout))
@@ -98,19 +152,27 @@ def build_model(inputs, output_size, neurons, activ_func="linear", dropout=0.25,
model.compile(loss=loss, optimizer=optimizer)
return model
+
def stock():
split_date = "2017.01.01"
model_data = getData_Stock("irxo", "Daily")
- model_data = model_data.sort_values(by='Date')
+ model_data = model_data.sort_values(by="Date")
- training_set, test_set = model_data[model_data['Date']<split_date], model_data[model_data['Date']>=split_date]
- training_set = training_set.drop('Date', 1)
- test_set = test_set.drop('Date', 1)
+ training_set, test_set = (
+ model_data[model_data["Date"] < split_date],
+ model_data[model_data["Date"] >= split_date],
+ )
+ training_set = training_set.drop("Date", 1)
+ test_set = test_set.drop("Date", 1)
training_inputs = training_set
- training_outputs = training_set.drop(['Open', 'High', 'Low', 'NTx', 'Volume'], axis=1)
+ training_outputs = training_set.drop(
+ ["Open", "High", "Low", "NTx", "Volume"], axis=1
+ )
test_inputs = test_set
- test_outputs = test_set.drop(["Open", "High", "Low", "NTx", "Volume"], axis=1)
+ test_outputs = test_set.drop(
+ ["Open", "High", "Low", "NTx", "Volume"], axis=1
+ )
print(training_set.head)
print(test_set.head)
@@ -120,77 +182,184 @@ def stock():
print(test_outputs.shape)
model = models.Sequential()
- model.add(layers.Dense(64, activation="relu", input_shape=(training_inputs.shape[1],)))
+ model.add(
+ layers.Dense(
+ 64, activation="relu", input_shape=(training_inputs.shape[1],)
+ )
+ )
model.add(layers.Dense(64, activation="relu"))
model.add(layers.Dense(1))
model.compile(optimizer="rmsprop", loss="mse", metrics=["mae"])
- history = model.fit(training_inputs, training_outputs, validation_data=(test_inputs, test_outputs), epochs=10, batch_size=1, verbose=2)
+ history = model.fit(
+ training_inputs,
+ training_outputs,
+ validation_data=(test_inputs, test_outputs),
+ epochs=10,
+ batch_size=1,
+ verbose=2,
+ )
+
def lstm_type_1(crypto, crypto_short):
model_data = getData_CMC(crypto, crypto_short)
np.random.seed(202)
- training_inputs, test_inputs, training_set, test_set = get_sets(crypto, model_data)
+ training_inputs, test_inputs, training_set, test_set = get_sets(
+ crypto, model_data
+ )
model = build_model(training_inputs, output_size=1, neurons=20, loss="mse")
- training_outputs = (training_set['Close'][window_len:].values/training_set['Close'][:-window_len].values)-1
- history = model.fit(training_inputs, training_outputs, epochs=50, batch_size=1, verbose=2, shuffle=True)
+ training_outputs = (
+ training_set["Close"][window_len:].values
+ / training_set["Close"][:-window_len].values
+ ) - 1
+ history = model.fit(
+ training_inputs,
+ training_outputs,
+ epochs=50,
+ batch_size=1,
+ verbose=2,
+ shuffle=True,
+ )
+
def lstm_type_4(crypto, crypto_short, crypto2, crypto_short2):
model_data = getData_CMC(crypto, crypto_short)
model_data2 = getData_CMC(crypto2, crypto_short2)
np.random.seed(202)
- training_inputs, test_inputs, training_set, test_set = get_sets(crypto, model_data)
- training_inputs2, test_inputs2, training_set2, test_set2 = get_sets(crypto2, model_data2)
+ training_inputs, test_inputs, training_set, test_set = get_sets(
+ crypto, model_data
+ )
+ training_inputs2, test_inputs2, training_set2, test_set2 = get_sets(
+ crypto2, model_data2
+ )
return
- model = build_model(training_inputs/training_inputs2, output_size=1, neurons=20, loss="mse")
- training_outputs = ((training_set['Close'][window_len:].values)/(training_set['Close'][:-window_len].values))-1
- history = model.fit(training_inputs/training_inputs2, training_outputs, epochs=10, batch_size=1, verbose=2, shuffle=True)
+ model = build_model(
+ training_inputs / training_inputs2,
+ output_size=1,
+ neurons=20,
+ loss="mse",
+ )
+ training_outputs = (
+ (training_set["Close"][window_len:].values)
+ / (training_set["Close"][:-window_len].values)
+ ) - 1
+ history = model.fit(
+ training_inputs / training_inputs2,
+ training_outputs,
+ epochs=10,
+ batch_size=1,
+ verbose=2,
+ shuffle=True,
+ )
+
def lstm_type_2(crypto, crypto_short, pred_range, neuron_count):
model_data = getData_CMC(crypto, crypto_short)
np.random.seed(202)
- training_inputs, test_inputs, training_set, test_set = get_sets(crypto, model_data)
- model = build_model(training_inputs, output_size=pred_range, neurons=neuron_count, loss="mse")
- training_outputs = (training_set['Close'][window_len:].values/training_set['Close'][:-window_len].values)-1
+ training_inputs, test_inputs, training_set, test_set = get_sets(
+ crypto, model_data
+ )
+ model = build_model(
+ training_inputs,
+ output_size=pred_range,
+ neurons=neuron_count,
+ loss="mse",
+ )
+ training_outputs = (
+ training_set["Close"][window_len:].values
+ / training_set["Close"][:-window_len].values
+ ) - 1
training_outputs = []
- for i in range(window_len, len(training_set['Close'])-pred_range):
- training_outputs.append((training_set['Close'][i:i+pred_range].values/training_set['Close'].values[i-window_len])-1)
+ for i in range(window_len, len(training_set["Close"]) - pred_range):
+ training_outputs.append(
+ (
+ training_set["Close"][i : i + pred_range].values
+ / training_set["Close"].values[i - window_len]
+ )
+ - 1
+ )
training_outputs = np.array(training_outputs)
- history = model.fit(training_inputs[:-pred_range], training_outputs, epochs=50, batch_size=1, verbose=2, shuffle=True)
+ history = model.fit(
+ training_inputs[:-pred_range],
+ training_outputs,
+ epochs=50,
+ batch_size=1,
+ verbose=2,
+ shuffle=True,
+ )
+
def lstm_type_3(crypto, crypto_short, pred_range, neuron_count):
model_data = getData_CMC(crypto, crypto_short)
np.random.seed(202)
- training_inputs, test_inputs, training_set, test_set = get_sets(crypto, model_data)
+ training_inputs, test_inputs, training_set, test_set = get_sets(
+ crypto, model_data
+ )
model = build_model(training_inputs, output_size=1, neurons=neuron_count)
- training_outputs = (training_set['Close'][window_len:].values/training_set['Close'][:-window_len].values)-1
+ training_outputs = (
+ training_set["Close"][window_len:].values
+ / training_set["Close"][:-window_len].values
+ ) - 1
training_outputs = []
for rand_seed in range(775, 800):
print(rand_seed)
np.random.seed(rand_seed)
- temp_model = build_model(training_inputs, output_size=1, neurons=neuron_count)
- temp_model.fit(training_inputs, (training_set['Close'][window_len:].values/training_set['Close'][:-window_len].values)-1, epochs=50, batch_size=1, verbose=0, shuffle=True)
- temp_model.save("./lstm-models/" + crypto + '_model_randseed_%d.h5'%rand_seed)
+ temp_model = build_model(
+ training_inputs, output_size=1, neurons=neuron_count
+ )
+ temp_model.fit(
+ training_inputs,
+ (
+ training_set["Close"][window_len:].values
+ / training_set["Close"][:-window_len].values
+ )
+ - 1,
+ epochs=50,
+ batch_size=1,
+ verbose=0,
+ shuffle=True,
+ )
+ temp_model.save(
+ "./lstm-models/" + crypto + "_model_randseed_%d.h5" % rand_seed
+ )
+
def load_models(crypto, crypto_short):
preds = []
model_data = getData_CMC(crypto, crypto_short)
np.random.seed(202)
- training_inputs, test_inputs, training_set, test_set = get_sets(crypto, model_data)
- for rand_seed in range(775,800):
- temp_model = load_model("./lstm-models/" + crypto + '_model_randseed_%d.h5'%rand_seed)
- preds.append(np.mean(abs(np.transpose(temp_model.predict(test_inputs))-(test_set['Close'].values[window_len:]/test_set['Close'].values[:-window_len]-1))))
+ training_inputs, test_inputs, training_set, test_set = get_sets(
+ crypto, model_data
+ )
+ for rand_seed in range(775, 800):
+ temp_model = load_model(
+ "./lstm-models/" + crypto + "_model_randseed_%d.h5" % rand_seed
+ )
+ preds.append(
+ np.mean(
+ abs(
+ np.transpose(temp_model.predict(test_inputs))
+ - (
+ test_set["Close"].values[window_len:]
+ / test_set["Close"].values[:-window_len]
+ - 1
+ )
+ )
+ )
+ )
+
# write code here
def premain(argparser):
signal.signal(signal.SIGINT, SigHandler_SIGINT)
- #here
- #lstm_type_1("ethereum", "ether")
- #lstm_type_2("ethereum", "ether", 5, 20)
- #lstm_type_3("ethereum", "ether", 5, 20)
- #lstm_type_4("ethereum", "ether", "dogecoin", "doge")
- #load_models("ethereum", "eth")
+ # here
+ # lstm_type_1("ethereum", "ether")
+ # lstm_type_2("ethereum", "ether", 5, 20)
+ # lstm_type_3("ethereum", "ether", 5, 20)
+ # lstm_type_4("ethereum", "ether", "dogecoin", "doge")
+ # load_models("ethereum", "eth")
stock()
+
def main():
argparser = Argparser()
if argparser.args.dbg:
@@ -198,7 +367,8 @@ def main():
premain(argparser)
except Exception as e:
print(e.__doc__)
- if e.message: print(e.message)
+ if e.message:
+ print(e.message)
variables = globals().copy()
variables.update(locals())
shell = code.InteractiveConsole(variables)
@@ -206,5 +376,6 @@ def main():
else:
premain(argparser)
+
if __name__ == "__main__":
main()
diff --git a/marionette.py b/marionette.py
index 86c2175..9b8a6e7 100755
--- a/marionette.py
+++ b/marionette.py
@@ -20,37 +20,57 @@ from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
+
def SigHandler_SIGINT(signum, frame):
print()
sys.exit(0)
+
class Argparser(object):
def __init__(self):
parser = argparse.ArgumentParser()
parser.add_argument("--string", type=str, help="string")
- parser.add_argument("--bool", action="store_true", help="bool", default=False)
- parser.add_argument("--dbg", action="store_true", help="debug", default=False)
+ parser.add_argument(
+ "--bool", action="store_true", help="bool", default=False
+ )
+ parser.add_argument(
+ "--dbg", action="store_true", help="debug", default=False
+ )
self.args = parser.parse_args()
+
def marrionette_type_1():
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
- names = ["sepal-length", "sepal-width", "petal-length", "petal-width", "class"]
+ names = [
+ "sepal-length",
+ "sepal-width",
+ "petal-length",
+ "petal-width",
+ "class",
+ ]
dataset = pandas.read_csv(url, names=names)
print(dataset.shape)
print(dataset.head(20))
print(dataset.describe())
print(dataset.groupby("class").size())
- #dataset.plot(kind="box", subplots=True, layout=(2,2), sharex=False, sharey=False)
- #dataset.hist()
+ # dataset.plot(kind="box", subplots=True, layout=(2,2), sharex=False, sharey=False)
+ # dataset.hist()
pandas.plotting.scatter_matrix(dataset)
plt.show()
array = dataset.values
- X = array[:,0:4]
- Y = array[:,4]
+ X = array[:, 0:4]
+ Y = array[:, 4]
validation_size = 0.20
seed = 7
- X_train, X_validation, Y_train, Y_validation = model_selection.train_test_split(X,Y,test_size=validation_size, random_state=seed)
- scoring="accuracy"
+ (
+ X_train,
+ X_validation,
+ Y_train,
+ Y_validation,
+ ) = model_selection.train_test_split(
+ X, Y, test_size=validation_size, random_state=seed
+ )
+ scoring = "accuracy"
models = []
models.append(("LR", LogisticRegression()))
models.append(("LDA", LinearDiscriminantAnalysis()))
@@ -62,7 +82,9 @@ def marrionette_type_1():
names = []
for name, model in models:
kfold = model_selection.KFold(n_splits=10, random_state=seed)
- cv_results = model_selection.cross_val_score(model, X_train, Y_train, cv=kfold, scoring=scoring)
+ cv_results = model_selection.cross_val_score(
+ model, X_train, Y_train, cv=kfold, scoring=scoring
+ )
results.append(cv_results)
names.append(name)
msg = "%s:%f(%f)" % (name, cv_results.mean(), cv_results.std())
@@ -82,12 +104,14 @@ def marrionette_type_1():
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))
+
# write code here
def premain(argparser):
signal.signal(signal.SIGINT, SigHandler_SIGINT)
- #here
+ # here
marrionette_type_1()
+
def main():
argparser = Argparser()
if argparser.args.dbg:
@@ -101,5 +125,6 @@ def main():
else:
premain(argparser)
+
if __name__ == "__main__":
main()
diff --git a/seer.py b/seer.py
index bf5fa0b..da56011 100755
--- a/seer.py
+++ b/seer.py
@@ -19,61 +19,106 @@ import googleapiclient.http
import oauth2client.client
import io
+
def SigHandler_SIGINT(signum, frame):
print()
sys.exit(0)
+
class Argparser(object):
def __init__(self):
parser = argparse.ArgumentParser()
parser.add_argument("--which", type=str, help="which one to run")
- parser.add_argument("--download", type=str, help="file name to download")
+ parser.add_argument(
+ "--download", type=str, help="file name to download"
+ )
parser.add_argument("--what", type=str, help="train or predict")
- parser.add_argument("--pysrcupdate", type=str, nargs="+", help="name of source files to update on the drive")
- parser.add_argument("--gpu", action="store_true", help="use gpu. if false will use cpu", default=False)
- parser.add_argument("--test1", action="store_true", help="test switch 1", default=False)
- parser.add_argument("--test2", action="store_true", help="test switch 2", default=False)
- parser.add_argument("--dbg", action="store_true", help="debug", default=False)
+ parser.add_argument(
+ "--pysrcupdate",
+ type=str,
+ nargs="+",
+ help="name of source files to update on the drive",
+ )
+ parser.add_argument(
+ "--gpu",
+ action="store_true",
+ help="use gpu. if false will use cpu",
+ default=False,
+ )
+ parser.add_argument(
+ "--test1", action="store_true", help="test switch 1", default=False
+ )
+ parser.add_argument(
+ "--test2", action="store_true", help="test switch 2", default=False
+ )
+ parser.add_argument(
+ "--dbg", action="store_true", help="debug", default=False
+ )
self.args = parser.parse_args()
+
def get_name_from_path(path):
path_pos = path.rfind("/")
if path_pos == -1:
return path
else:
- return path[path_pos+1:]
+ return path[path_pos + 1 :]
+
def authenticate_drive():
OAUTH2_SCOPE = "https://www.googleapis.com/auth/drive"
CLIENT_SECRETS = "./secret.json"
- flow = oauth2client.client.flow_from_clientsecrets(CLIENT_SECRETS, OAUTH2_SCOPE)
+ flow = oauth2client.client.flow_from_clientsecrets(
+ CLIENT_SECRETS, OAUTH2_SCOPE
+ )
flow.redirect_uri = oauth2client.client.OOB_CALLBACK_URN
authorize_url = flow.step1_get_authorize_url()
- print('Go to the following link in your browser: ' + authorize_url)
- code = input('Enter verification code: ').strip()
+ print("Go to the following link in your browser: " + authorize_url)
+ code = input("Enter verification code: ").strip()
credentials = flow.step2_exchange(code)
http = httplib2.Http()
credentials.authorize(http)
- drive_service = build('drive', 'v3', http=http)
+ drive_service = build("drive", "v3", http=http)
return drive_service
+
def get_folder_id(folder_name, drive_service):
- parent_dir = drive_service.files().list(q="mimeType='application/vnd.google-apps.folder' and name='"+folder_name+"'", fields="files(id, name)", spaces="drive").execute()
+ parent_dir = (
+ drive_service.files()
+ .list(
+ q="mimeType='application/vnd.google-apps.folder' and name='"
+ + folder_name
+ + "'",
+ fields="files(id, name)",
+ spaces="drive",
+ )
+ .execute()
+ )
folder_id = str()
for file in parent_dir.get("files", []):
print(file.get("name") + "---" + file.get("id"))
folder_id = file.get("id")
return folder_id
+
def get_file_id(file_name, folder_name, drive_service):
folder_id = get_folder_id(folder_name, drive_service)
- download_to_be = drive_service.files().list(q="name='"+file_name+"' and '"+folder_id+"' in parents", fields="files(id, name)", spaces="drive").execute()
+ download_to_be = (
+ drive_service.files()
+ .list(
+ q="name='" + file_name + "' and '" + folder_id + "' in parents",
+ fields="files(id, name)",
+ spaces="drive",
+ )
+ .execute()
+ )
file_id = str()
for file in download_to_be.get("files", []):
print(file.get("name") + "---" + file.get("id"))
file_id = file.get("id")
return file_id
+
def g_drive_up(file_path, file_name, file_type, to_folder):
FILENAME = file_path
MIMETYPE = file_type
@@ -81,64 +126,113 @@ def g_drive_up(file_path, file_name, file_type, to_folder):
DESCRIPTION = "a file"
drive_service = authenticate_drive()
- media_body = googleapiclient.http.MediaFileUpload(FILENAME, mimetype=MIMETYPE, resumable=True)
- parent_dir = drive_service.files().list(q="mimeType='application/vnd.google-apps.folder' and name='"+to_folder+"'", fields="files(id, name)", spaces="drive").execute()
+ media_body = googleapiclient.http.MediaFileUpload(
+ FILENAME, mimetype=MIMETYPE, resumable=True
+ )
+ parent_dir = (
+ drive_service.files()
+ .list(
+ q="mimeType='application/vnd.google-apps.folder' and name='"
+ + to_folder
+ + "'",
+ fields="files(id, name)",
+ spaces="drive",
+ )
+ .execute()
+ )
folder_id = str()
for file in parent_dir.get("files", []):
print(file.get("name") + "---" + file.get("id"))
folder_id = file.get("id")
- body = {'name': TITLE, 'description': DESCRIPTION, 'parents': [folder_id]}
- new_file = drive_service.files().create(body=body, media_body=media_body, fields="id").execute()
+ body = {"name": TITLE, "description": DESCRIPTION, "parents": [folder_id]}
+ new_file = (
+ drive_service.files()
+ .create(body=body, media_body=media_body, fields="id")
+ .execute()
+ )
print(new_file.get("id"))
- #pprint.pprint(new_file)
+ # pprint.pprint(new_file)
+
def g_drive_down(folder_name, file_name):
drive_service = authenticate_drive()
- #get folder id
- parent_dir = drive_service.files().list(q="mimeType='application/vnd.google-apps.folder' and name='"+folder_name+"'", fields="files(id, name)", spaces="drive").execute()
+ # get folder id
+ parent_dir = (
+ drive_service.files()
+ .list(
+ q="mimeType='application/vnd.google-apps.folder' and name='"
+ + folder_name
+ + "'",
+ fields="files(id, name)",
+ spaces="drive",
+ )
+ .execute()
+ )
folder_id = str()
for file in parent_dir.get("files", []):
print(file.get("name") + "---" + file.get("id"))
folder_id = file.get("id")
- #get file id
- download_to_be = drive_service.files().list(q="name='"+file_name+"' and '"+folder_id+"' in parents", fields="files(id, name)", spaces="drive").execute()
+ # get file id
+ download_to_be = (
+ drive_service.files()
+ .list(
+ q="name='" + file_name + "' and '" + folder_id + "' in parents",
+ fields="files(id, name)",
+ spaces="drive",
+ )
+ .execute()
+ )
file_id = str()
for file in download_to_be.get("files", []):
print(file.get("name") + "---" + file.get("id"))
file_id = file.get("id")
request = drive_service.files().get_media(fileId=file_id)
- #fh = io.BytesIO()
+ # fh = io.BytesIO()
fh = io.FileIO(file_name, "w")
downloader = MediaIoBaseDownload(fh, request)
done = False
while done is False:
status, done = downloader.next_chunk()
print("Download %d%%." % int(status.progress() * 100))
- #print(downloader)
+ # print(downloader)
+
def g_drive_update(folder_name, file_name):
drive_service = authenticate_drive()
file_id = get_file_id(file_name, folder_name, drive_service)
u_file = drive_service.files().get(fileId=file_id).execute()
media_body = MediaFileUpload(resumable=True)
- updated_file = drive_service.files().update(fileId=file_id, body=u_file, media_body=media_body).execute()
+ updated_file = (
+ drive_service.files()
+ .update(fileId=file_id, body=u_file, media_body=media_body)
+ .execute()
+ )
+
def launch_ais(which):
- if which == "marionette": marrionette_type_1()
- elif which == "lstm_type_1": lstm_type_1("ethereum", "ether")
- elif which == "lstm_type_2": lstm_type_2("ethereum", "ether", 5, 20)
- elif which == "lstm_type_3": lstm_type_3("ethereum", "ether", 5, 20)
- elif which == "cnn_type_1": cnn_type_1()
- elif which == "tfann_type_1": tfann_type_1()
- else: pass
+ if which == "marionette":
+ marrionette_type_1()
+ elif which == "lstm_type_1":
+ lstm_type_1("ethereum", "ether")
+ elif which == "lstm_type_2":
+ lstm_type_2("ethereum", "ether", 5, 20)
+ elif which == "lstm_type_3":
+ lstm_type_3("ethereum", "ether", 5, 20)
+ elif which == "cnn_type_1":
+ cnn_type_1()
+ elif which == "tfann_type_1":
+ tfann_type_1()
+ else:
+ pass
+
# write code here
def premain(argparser):
signal.signal(signal.SIGINT, SigHandler_SIGINT)
- #here
+ # here
if argparser.args.pysrcupdate:
for src in argparser.args.pysrcupdate:
g_drive_up(src, get_name_from_path(src), "text/python", "colab")
@@ -146,6 +240,7 @@ def premain(argparser):
g_drive_down("colab", "main.py")
launch_ais(argparser.args.which)
+
def main():
argparser = Argparser()
if argparser.args.dbg:
@@ -153,7 +248,8 @@ def main():
premain(argparser)
except Exception as e:
print(e.__doc__)
- if e.message: print(e.message)
+ if e.message:
+ print(e.message)
variables = globals().copy()
variables.update(locals())
shell = code.InteractiveConsole(variables)
@@ -161,5 +257,6 @@ def main():
else:
premain(argparser)
+
if __name__ == "__main__":
main()
diff --git a/stock.py b/stock.py
index 6ad60ed..1d40c51 100755
--- a/stock.py
+++ b/stock.py
@@ -18,30 +18,41 @@ from keras.layers import LSTM
from keras.layers import Dropout
from keras.models import load_model
+
def SigHandler_SIGINT(signum, frame):
print()
sys.exit(0)
+
class Argparser(object):
def __init__(self):
parser = argparse.ArgumentParser()
parser.add_argument("--string", type=str, help="string")
- parser.add_argument("--bool", action="store_true", help="bool", default=False)
- parser.add_argument("--dbg", action="store_true", help="debug", default=False)
+ parser.add_argument(
+ "--bool", action="store_true", help="bool", default=False
+ )
+ parser.add_argument(
+ "--dbg", action="store_true", help="debug", default=False
+ )
self.args = parser.parse_args()
+
def build_model(train_data):
model = models.Sequential()
- model.add(layers.Dense(64, activation="relu", input_shape=(train_data.shape[1],)))
+ model.add(
+ layers.Dense(64, activation="relu", input_shape=(train_data.shape[1],))
+ )
model.add(layers.Dense(64, activation="relu"))
model.add(layers.Dense(1))
model.compile(optimizer="rmsprop", loss="mse", metrics=["acc"])
return model
+
# write code here
def premain(argparser):
signal.signal(signal.SIGINT, SigHandler_SIGINT)
- #here
+ # here
+
def main():
argparser = Argparser()
@@ -50,7 +61,8 @@ def main():
premain(argparser)
except Exception as e:
print(e.__doc__)
- if e.message: print(e.message)
+ if e.message:
+ print(e.message)
variables = globals().copy()
variables.update(locals())
shell = code.InteractiveConsole(variables)
@@ -58,5 +70,6 @@ def main():
else:
premain(argparser)
+
if __name__ == "__main__":
main()
diff --git a/tfann.py b/tfann.py
index c6f3d08..65cf6be 100755
--- a/tfann.py
+++ b/tfann.py
@@ -2,7 +2,7 @@
# _*_ coding=utf-8 _*_
# original source-https://nicholastsmith.wordpress.com/2017/11/13/cryptocurrency-price-prediction-using-deep-learning-in-tensorflow/
-#@#!pip install TFANN
+# @#!pip install TFANN
import code
import readline
import signal
@@ -14,120 +14,143 @@ import pandas as pd
import urllib.request
import matplotlib.pyplot as mpl
-def GetAPIUrl(cur, sts = 1420070400):
- return 'https://poloniex.com/public?command=returnChartData&currencyPair=USDT_{:s}&start={:d}&end=9999999999&period=7200'.format(cur, sts)
+
+def GetAPIUrl(cur, sts=1420070400):
+ return "https://poloniex.com/public?command=returnChartData&currencyPair=USDT_{:s}&start={:d}&end=9999999999&period=7200".format(
+ cur, sts
+ )
+
def GetCurDF(cur, fp):
openUrl = urllib.request.urlopen(GetAPIUrl(cur))
r = openUrl.read()
openUrl.close()
df = pd.read_json(r.decode())
- df['date'] = df['date'].astype(np.int64) // 1000000000
+ df["date"] = df["date"].astype(np.int64) // 1000000000
print(df.head())
return df
+
class PastSampler:
def __init__(self, N, K):
self.K = K
self.N = N
- def transform(self, A, Y = None):
- M = self.N + self.K #Number of samples per row (sample + target)
- #Matrix of sample indices like: {{1, 2..., M}, {2, 3, ..., M + 1}}
+ def transform(self, A, Y=None):
+ M = self.N + self.K # Number of samples per row (sample + target)
+ # Matrix of sample indices like: {{1, 2..., M}, {2, 3, ..., M + 1}}
I = np.arange(M) + np.arange(A.shape[0] - M + 1).reshape(-1, 1)
B = A[I].reshape(-1, M * A.shape[1], *A.shape[2:])
- ci = self.N * A.shape[1] #Number of features per sample
- return B[:, :ci], B[:, ci:] #Sample matrix, Target matrix
+ ci = self.N * A.shape[1] # Number of features per sample
+ return B[:, :ci], B[:, ci:] # Sample matrix, Target matrix
+
def tfann_type_1():
#%%Path to store cached currency data
- datPath = 'CurDat/'
+ datPath = "CurDat/"
if not os.path.exists(datPath):
os.mkdir(datPath)
- #Different cryptocurrency types
- cl = ['BTC', 'LTC', 'ETH', 'XMR']
- #Columns of price data to use
- CN = ['close', 'high', 'low', 'open', 'volume']
- #Store data frames for each of above types
+ # Different cryptocurrency types
+ cl = ["BTC", "LTC", "ETH", "XMR"]
+ # Columns of price data to use
+ CN = ["close", "high", "low", "open", "volume"]
+ # Store data frames for each of above types
D = []
for ci in cl:
- dfp = os.path.join(datPath, ci + '.csv')
+ dfp = os.path.join(datPath, ci + ".csv")
try:
- df = pd.read_csv(dfp, sep = ',')
+ df = pd.read_csv(dfp, sep=",")
except FileNotFoundError:
df = GetCurDF(ci, dfp)
D.append(df)
#%%Only keep range of data that is common to all currency types
cr = min(Di.shape[0] for Di in D)
for i in range(len(cl)):
- D[i] = D[i][(D[i].shape[0] - cr):]
+ D[i] = D[i][(D[i].shape[0] - cr) :]
#%%Features are channels
C = np.hstack((Di[CN] for Di in D))[:, None, :]
- HP = 16 #Holdout period
+ HP = 16 # Holdout period
A = C[0:-HP]
- SV = A.mean(axis = 0) #Scale vector
- C /= SV #Basic scaling of data
+ SV = A.mean(axis=0) # Scale vector
+ C /= SV # Basic scaling of data
#%%Make samples of temporal sequences of pricing data (channel)
- NPS, NFS = 256, 16 #Number of past and future samples
+ NPS, NFS = 256, 16 # Number of past and future samples
ps = PastSampler(NPS, NFS)
B, Y = ps.transform(A)
#%%Architecture of the neural network
NC = B.shape[2]
- #2 1-D conv layers with relu followed by 1-d conv output layer
- ns = [('C1d', [8, NC, NC * 2], 4), ('AF', 'relu'),
- ('C1d', [8, NC * 2, NC * 2], 2), ('AF', 'relu'),
- ('C1d', [8, NC * 2, NC], 2)]
- #Create the neural network in TensorFlow
- cnnr = ANNR(B[0].shape, ns, batchSize = 32, learnRate = 2e-5,
- maxIter = 64, reg = 1e-5, tol = 1e-2, verbose = True)
+ # 2 1-D conv layers with relu followed by 1-d conv output layer
+ ns = [
+ ("C1d", [8, NC, NC * 2], 4),
+ ("AF", "relu"),
+ ("C1d", [8, NC * 2, NC * 2], 2),
+ ("AF", "relu"),
+ ("C1d", [8, NC * 2, NC], 2),
+ ]
+ # Create the neural network in TensorFlow
+ cnnr = ANNR(
+ B[0].shape,
+ ns,
+ batchSize=32,
+ learnRate=2e-5,
+ maxIter=64,
+ reg=1e-5,
+ tol=1e-2,
+ verbose=True,
+ )
cnnr.fit(B, Y)
- PTS = [] #Predicted time sequences
- P, YH = B[[-1]], Y[[-1]] #Most recent time sequence
- for i in range(HP // NFS): #Repeat prediction
- P = np.concatenate([P[:, NFS:], YH], axis = 1)
+ PTS = [] # Predicted time sequences
+ P, YH = B[[-1]], Y[[-1]] # Most recent time sequence
+ for i in range(HP // NFS): # Repeat prediction
+ P = np.concatenate([P[:, NFS:], YH], axis=1)
YH = cnnr.predict(P)
PTS.append(YH)
PTS = np.hstack(PTS).transpose((1, 0, 2))
- A = np.vstack([A, PTS]) #Combine predictions with original data
- A = np.squeeze(A) * SV #Remove unittime dimension and rescale
+ A = np.vstack([A, PTS]) # Combine predictions with original data
+ A = np.squeeze(A) * SV # Remove unittime dimension and rescale
C = np.squeeze(C) * SV
nt = 4
PF = cnnr.PredictFull(B[:nt])
for i in range(nt):
- fig, ax = mpl.subplots(1, 4, figsize = (16 / 1.24, 10 / 1.25))
+ fig, ax = mpl.subplots(1, 4, figsize=(16 / 1.24, 10 / 1.25))
ax[0].plot(PF[0][i])
- ax[0].set_title('Input')
+ ax[0].set_title("Input")
ax[1].plot(PF[2][i])
- ax[1].set_title('Layer 1')
+ ax[1].set_title("Layer 1")
ax[2].plot(PF[4][i])
- ax[2].set_title('Layer 2')
+ ax[2].set_title("Layer 2")
ax[3].plot(PF[5][i])
- ax[3].set_title('Output')
- fig.text(0.5, 0.06, 'Time', ha='center')
- fig.text(0.06, 0.5, 'Activation', va='center', rotation='vertical')
+ ax[3].set_title("Output")
+ fig.text(0.5, 0.06, "Time", ha="center")
+ fig.text(0.06, 0.5, "Activation", va="center", rotation="vertical")
mpl.show()
CI = list(range(C.shape[0]))
AI = list(range(C.shape[0] + PTS.shape[0] - HP))
- NDP = PTS.shape[0] #Number of days predicted
+ NDP = PTS.shape[0] # Number of days predicted
for i, cli in enumerate(cl):
- fig, ax = mpl.subplots(figsize = (16 / 1.5, 10 / 1.5))
- hind = i * len(CN) + CN.index('high')
- ax.plot(CI[-4 * HP:], C[-4 * HP:, hind], label = 'Actual')
- ax.plot(AI[-(NDP + 1):], A[-(NDP + 1):, hind], '--', label = 'Prediction')
- ax.legend(loc = 'upper left')
- ax.set_title(cli + ' (High)')
- ax.set_ylabel('USD')
- ax.set_xlabel('Time')
+ fig, ax = mpl.subplots(figsize=(16 / 1.5, 10 / 1.5))
+ hind = i * len(CN) + CN.index("high")
+ ax.plot(CI[-4 * HP :], C[-4 * HP :, hind], label="Actual")
+ ax.plot(
+ AI[-(NDP + 1) :], A[-(NDP + 1) :, hind], "--", label="Prediction"
+ )
+ ax.legend(loc="upper left")
+ ax.set_title(cli + " (High)")
+ ax.set_ylabel("USD")
+ ax.set_xlabel("Time")
ax.axes.xaxis.set_ticklabels([])
mpl.show()
+
# write code here
def premain():
- #here
+ # here
tfann_type_1()
+
def main():
premain()
+
if __name__ == "__main__":
main()