diff options
| author | bloodstalker <thabogre@gmail.com> | 2018-10-20 11:56:59 +0000 | 
|---|---|---|
| committer | bloodstalker <thabogre@gmail.com> | 2018-10-20 11:56:59 +0000 | 
| commit | 4d3d0e8a9c366c42c44bc21f78610d2ebb019b77 (patch) | |
| tree | d3a115f6667ab192fff2d4bc15b51099df4dcb8a | |
| parent | update (diff) | |
| download | seer-4d3d0e8a9c366c42c44bc21f78610d2ebb019b77.tar.gz seer-4d3d0e8a9c366c42c44bc21f78610d2ebb019b77.zip | |
update
| -rwxr-xr-x | dlstuff/five.py | 84 | ||||
| -rwxr-xr-x | dlstuff/seven.py | 64 | ||||
| -rwxr-xr-x | dlstuff/two.py | 9 | 
3 files changed, 154 insertions, 3 deletions
| diff --git a/dlstuff/five.py b/dlstuff/five.py new file mode 100755 index 0000000..0779e6c --- /dev/null +++ b/dlstuff/five.py @@ -0,0 +1,84 @@ +#!/usr/bin/python3 +# _*_ coding=utf-8 _*_ + +import argparse +import code +import readline +import signal +import sys +import keras +from keras import Input, Model +from keras import layers + +def SigHandler_SIGINT(signum, frame): +    print() +    sys.exit(0) + +class Argparser(object): +    def __init__(self): +        parser = argparse.ArgumentParser() +        parser.add_argument("--string", type=str, help="string") +        parser.add_argument("--bool", action="store_true", help="bool", default=False) +        parser.add_argument("--dbg", action="store_true", help="debug", default=False) +        self.args = parser.parse_args() + +# write code here +def premain(argparser): +    signal.signal(signal.SIGINT, SigHandler_SIGINT) +    #here +    callbacks_list = [keras.callbacks.EarlyStopping(monitor="acc", patience=1,), keras.callbacks.ModelCheckpoint(filepath="mymodel.h5", monitor="val_loss", save_best_only=True,)] +    input_tensor = Input(shape=(64,)) +    x = layers.Dense(32, activation="relu")(input_tensor) +    x = layers.Dense(32, activation="relu")(x) +    output_tensor = layers.Dense(10, activation="softmax")(x) +    model = Model(input_tensor, output_tensor) +    model.summary() +    model.compile(optimizer="rmsprop", loss="categorical_crossentropy", metrics=["acc"]) +    import numpy as np +    x_train = np.random.random((1000, 64)) +    y_train = np.random.random((1000, 10)) +    x_val = np.random.random((1000, 64)) +    y_val = np.random.random((1000, 10)) +    model.fit(x_train, y_train, epochs=10, batch_size=128, callbacks=callbacks_list, validation_data=(x_val, y_val)) +    score = model.evaluate(x_train, y_train) +    print(score) +    ''' +    text_vocabulary_size = 10000 +    question_vocabulary_size = 10000 +    answer_vocabulary_size = 500 +    text_input = Input(shape=(None, ), dtype="int32", name="text") +    embedded_text = layers.Embedding(64, text_vocabulary_size)(text_input) +    encoded_text = layers.LSTM(32)(embedded_text) +    question_input = Input(shape=(None,), dtype="int32", name="question") +    embedded_question = layers.Embedding(32, question_vocabulary_size)(question_input) +    encoded_question = layers.LSTM(16)(embedded_question) +    concatenated = layers.concatenate([encoded_text, encoded_question], axis=-1) +    answer = layers.Dense(answer_vocabulary_size, activatoin="softmax")(concatenated) +    model = Model([text_input, question_input], answer) +    model.compile(optimizer="rmsprop", loss="categorical_crossentropy", metrics=["acc"]) +    import numpy as np +    num_samples = 1000 +    max_length = 100 +    text = np.random.randint(1, text_vocabulary_size, size=(num_samples, max_length)) +    question = np.random.randint(1, question_vocabulary_size, size=(num_samples, max_length)) +    answers = np.random.randint(0, 1, size=(num_samples, answer_vocabulary_size)) +    model.fit([text, question], answers, epochs=10, batch_size=128) +    ''' + +def main(): +    argparser = Argparser() +    if argparser.args.dbg: +        try: +            premain(argparser) +        except Exception as e: +            print(e.__doc__) +            if e.message: print(e.message) +            variables = globals().copy() +            variables.update(locals()) +            shell = code.InteractiveConsole(variables) +            shell.interact(banner="DEBUG REPL") +    else: +        premain(argparser) + +if __name__ == "__main__": +    main() diff --git a/dlstuff/seven.py b/dlstuff/seven.py new file mode 100755 index 0000000..12cab94 --- /dev/null +++ b/dlstuff/seven.py @@ -0,0 +1,64 @@ +#!/usr/bin/python3 +# _*_ coding=utf-8 _*_ + +import argparse +import code +import readline +import signal +import sys +import keras +from keras import layers +from keras.datasets import imdb +from keras.preprocessing import sequence + +def SigHandler_SIGINT(signum, frame): +    print() +    sys.exit(0) + +class Argparser(object): +    def __init__(self): +        parser = argparse.ArgumentParser() +        parser.add_argument("--string", type=str, help="string") +        parser.add_argument("--bool", action="store_true", help="bool", default=False) +        parser.add_argument("--dbg", action="store_true", help="debug", default=False) +        self.args = parser.parse_args() + +# write code here +def premain(argparser): +    signal.signal(signal.SIGINT, SigHandler_SIGINT) +    #here +    callbacks = [keras.callbacks.TensorBoard(log_dir="logfiles", histogram_freq=1, embeddings_freq=1,)] +    max_features = 2000 +    max_len = 500 +    (x_train, y_train), (x_test, y_test) = imdb.load_data(num_words=max_features) +    x_train = sequence.pad_sequences(x_train, maxlen=max_len) +    x_test = sequence.pad_sequences(x_test, maxlen=max_len) +    model = keras.models.Sequential() +    model.add(layers.Embedding(max_features, 128, input_length=max_len, name="embed")) +    model.add(layers.Conv1D(32, 7, activation="relu")) +    model.add(layers.MaxPooling1D(5)) +    model.add(layers.Conv1D(32, 7, activation="relu")) +    model.add(layers.GlobalMaxPooling1D()) +    model.add(layers.Dense(1)) +    summary = model.summary() +    print(summary) +    model.compile(optimizer="rmsprop", loss="binary_crossentropy", metrics=["acc"]) +    history = model.fit(x_train, y_train, epochs=20, batch_size=128, validation_split=0.2, callbacks=callbacks) + +def main(): +    argparser = Argparser() +    if argparser.args.dbg: +        try: +            premain(argparser) +        except Exception as e: +            print(e.__doc__) +            if e.message: print(e.message) +            variables = globals().copy() +            variables.update(locals()) +            shell = code.InteractiveConsole(variables) +            shell.interact(banner="DEBUG REPL") +    else: +        premain(argparser) + +if __name__ == "__main__": +    main() diff --git a/dlstuff/two.py b/dlstuff/two.py index 9eab134..8287708 100755 --- a/dlstuff/two.py +++ b/dlstuff/two.py @@ -10,6 +10,7 @@ from keras.datasets import imdb  import numpy as np  from keras import models  from keras import layers +from keras import regularizers  import matplotlib.pyplot as plt  def SigHandler_SIGINT(signum, frame): @@ -67,8 +68,10 @@ def premain(argparser):      y_test = np.asarray(test_labels).astype("float32")      model = models.Sequential() -    model.add(layers.Dense(16, activation="relu", input_shape=(10000,))) -    model.add(layers.Dense(16, activation="relu")) +    model.add(layers.Dense(16, kernel_regularizer=regularizers.l2(0.001), activation="relu", input_shape=(10000,))) +    model.add(layers.Dropout(0.5)) +    model.add(layers.Dense(16, kernel_regularizer=regularizers.l2(0.001), activation="relu")) +    model.add(layers.Dropout(0.5))      model.add(layers.Dense(1, activation="sigmoid"))      x_val = x_train[:10000] @@ -85,7 +88,7 @@ def premain(argparser):      plot_acc(history)      ''' -    model.fit(x_train, y_train, epochs=4, batch_size=512) +    model.fit(x_train, y_train, epochs=20, batch_size=512)      results = model.evaluate(x_test, y_test)      print(results) | 
