aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorbloodstalker <thabogre@gmail.com>2018-10-17 17:45:51 +0000
committerbloodstalker <thabogre@gmail.com>2018-10-17 17:45:51 +0000
commita7f7a083fc3e6eb7fc1c689c3dbf0e758670f6a4 (patch)
tree13879399c3ddec4743f8f6a884b0b67c4b4f0304
parentupdate (diff)
downloadseer-a7f7a083fc3e6eb7fc1c689c3dbf0e758670f6a4.tar.gz
seer-a7f7a083fc3e6eb7fc1c689c3dbf0e758670f6a4.zip
update
-rw-r--r--dlstuff/.two.py.swpbin0 -> 12288 bytes
-rwxr-xr-xdlstuff/four.py106
-rwxr-xr-xdlstuff/one.py78
-rwxr-xr-xdlstuff/three.py119
-rwxr-xr-xdlstuff/two.py109
5 files changed, 412 insertions, 0 deletions
diff --git a/dlstuff/.two.py.swp b/dlstuff/.two.py.swp
new file mode 100644
index 0000000..3e75bd6
--- /dev/null
+++ b/dlstuff/.two.py.swp
Binary files differ
diff --git a/dlstuff/four.py b/dlstuff/four.py
new file mode 100755
index 0000000..983386a
--- /dev/null
+++ b/dlstuff/four.py
@@ -0,0 +1,106 @@
+#!/usr/bin/python3
+# _*_ coding=utf-8 _*_
+
+import argparse
+import code
+import readline
+import signal
+import sys
+import numpy as np
+from keras.datasets import boston_housing
+from keras import models
+from keras import layers
+import matplotlib.pyplot as plt
+from keras.utils.np_utils import to_categorical
+
+def SigHandler_SIGINT(signum, frame):
+ print()
+ sys.exit(0)
+
+class Argparser(object):
+ def __init__(self):
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--string", type=str, help="string")
+ parser.add_argument("--bool", action="store_true", help="bool", default=False)
+ parser.add_argument("--dbg", action="store_true", help="debug", default=False)
+ self.args = parser.parse_args()
+
+def build_model(train_data):
+ model = models.Sequential()
+ model.add(layers.Dense(64, activation="relu", input_shape=(train_data.shape[1],)))
+ model.add(layers.Dense(64, activation="relu"))
+ model.add(layers.Dense(1))
+ model.compile(optimizer="rmsprop", loss="mse", metrics=["mae"])
+ return model
+
+def smooth_curve(points, factor=0.9):
+ smoothed_points = []
+ for point in points:
+ if smoothed_points:
+ previous = smoothed_points[-1]
+ smoothed_points.append(previous*factor+point*(1-factor))
+ else:
+ smoothed_points.append(point)
+ return smoothed_points
+
+# write code here
+def premain(argparser):
+ signal.signal(signal.SIGINT, SigHandler_SIGINT)
+ #here
+ (train_data, train_targets), (test_data, test_targets) = boston_housing.load_data()
+ mean = train_data.mean(axis=0)
+ train_data -= mean
+ std = train_data.std(axis=0)
+ train_data /= std
+
+ test_data -= mean
+ test_data /= std
+
+ k = 4
+ num_epochs = 500
+ num_val_samples = len(train_data) // k
+ num_epochs = 100
+ all_scores = []
+ all_mae_histories = []
+
+ for i in range(k):
+ print("processing fold #", i)
+ val_data = train_data[i*num_val_samples:(i+1)*num_val_samples]
+ val_targets = train_targets[i*num_val_samples:(i+1)*num_val_samples]
+ partial_train_data = np.concatenate(
+ [train_data[:i*num_val_samples],
+ train_data[(i+1)*num_val_samples:]], axis=0)
+ partial_train_targets = np.concatenate(
+ [train_targets[:i*num_val_samples],
+ train_targets[(i+1)*num_val_samples:]], axis=0)
+ model = build_model(train_data)
+ history = model.fit(partial_train_data, partial_train_targets, validation_data=(val_data, val_targets), epochs=num_epochs, batch_size=1, verbose=0)
+ val_mse, val_mae = model.evaluate(val_data, val_targets, verbose=0)
+ mae_history = history.history["val_mean_absolute_error"]
+ all_mae_histories.append(mae_history)
+ all_scores.append(val_mae)
+
+ average_mae_history = [np.mean([x[i] for x in all_mae_histories]) for i in range(num_epochs)]
+ smoothed_mae_history = smooth_curve(average_mae_history[10:])
+ plt.plot(range(1, len(smoothed_mae_history) + 1), smoothed_mae_history)
+ plt.xlabel("Epochs")
+ plt.ylabel("Validation MAE")
+ plt.show()
+
+def main():
+ argparser = Argparser()
+ if argparser.args.dbg:
+ try:
+ premain(argparser)
+ except Exception as e:
+ print(e.__doc__)
+ if e.message: print(e.message)
+ variables = globals().copy()
+ variables.update(locals())
+ shell = code.InteractiveConsole(variables)
+ shell.interact(banner="DEBUG REPL")
+ else:
+ premain(argparser)
+
+if __name__ == "__main__":
+ main()
diff --git a/dlstuff/one.py b/dlstuff/one.py
new file mode 100755
index 0000000..4012b89
--- /dev/null
+++ b/dlstuff/one.py
@@ -0,0 +1,78 @@
+#!/usr/bin/python3
+# _*_ coding=utf-8 _*_
+
+import argparse
+import code
+import readline
+import signal
+import sys
+from keras.datasets import mnist
+from keras import models
+from keras import layers
+from keras.utils import to_categorical
+import matplotlib.pyplot as plt
+
+def SigHandler_SIGINT(signum, frame):
+ print()
+ sys.exit(0)
+
+class Argparser(object):
+ def __init__(self):
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--string", type=str, help="string")
+ parser.add_argument("--bool", action="store_true", help="bool", default=False)
+ parser.add_argument("--dbg", action="store_true", help="debug", default=False)
+ self.args = parser.parse_args()
+
+# write code here
+def premain(argparser):
+ signal.signal(signal.SIGINT, SigHandler_SIGINT)
+ #here
+ (train_images, train_labels), (test_images, test_labels) = mnist.load_data()
+ '''
+ print(train_images.shape)
+ print(len(train_labels))
+ print(train_labels)
+ print(test_images.shape)
+ print(len(test_labels))
+ print(test_labels)
+ digit = train_images[4]
+ plt.imshow(digit, cmap=plt.cm.binary)
+ plt.show()
+ '''
+
+ network = models.Sequential()
+ network.add(layers.Dense(512, activation="relu", input_shape=(28*28,)))
+ network.add(layers.Dense(10, activation="softmax"))
+ #network.compile(optimizer="rmsprop", loss="categorical_crossentropy", metrics=["accuracy"])
+ network.compile(optimizer="rmsprop", loss="mse", metrics=["accuracy"])
+
+ train_images = train_images.reshape((60000, 28 * 28))
+ train_images = train_images.astype("float32") / 255
+ test_images = test_images.reshape((10000, 28 * 28))
+ test_images = test_images.astype("float32") / 255
+ train_labels = to_categorical(train_labels)
+ test_labels = to_categorical(test_labels)
+
+ network.fit(train_images, train_labels, epochs=5, batch_size=128)
+
+ test_loss, test_acc = network.evaluate(test_images, test_labels)
+ print("test_acc:", test_acc)
+
+def main():
+ argparser = Argparser()
+ if argparser.args.dbg:
+ try:
+ premain(argparser)
+ except Exception as e:
+ print(e.__doc__)
+ if e.message: print(e.message)
+ variables = globals().copy()
+ variables.update(locals())
+ shell = code.InteractiveConsole(variables)
+ shell.interact(banner="DEBUG REPL")
+ else:
+ premain(argparser)
+
+if __name__ == "__main__":
+ main()
diff --git a/dlstuff/three.py b/dlstuff/three.py
new file mode 100755
index 0000000..fe6e2ee
--- /dev/null
+++ b/dlstuff/three.py
@@ -0,0 +1,119 @@
+#!/usr/bin/python3
+# _*_ coding=utf-8 _*_
+
+import argparse
+import code
+import readline
+import signal
+import sys
+import numpy as np
+from keras.datasets import reuters
+from keras import models
+from keras import layers
+import matplotlib.pyplot as plt
+from keras.utils.np_utils import to_categorical
+
+def SigHandler_SIGINT(signum, frame):
+ print()
+ sys.exit(0)
+
+class Argparser(object):
+ def __init__(self):
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--string", type=str, help="string")
+ parser.add_argument("--bool", action="store_true", help="bool", default=False)
+ parser.add_argument("--dbg", action="store_true", help="debug", default=False)
+ self.args = parser.parse_args()
+
+def vectorize_sequences(sequences, dimension=10000):
+ results = np.zeros((len(sequences), dimension))
+ for i, sequence in enumerate(sequences):
+ results[i, sequence] = 1.
+ return results
+
+def to_one_hot(labels, dimension=46):
+ results = np.zeros((len(sequences), dimension))
+ for i, label in enumerate(labels):
+ results[i, label] = 1.
+ return results
+
+def plot_loss(history):
+ history_dic = history.history
+ loss_values = history_dic["loss"]
+ val_loss_values = history_dic["val_loss"]
+ epochs = range(1, len(history_dic["loss"]) + 1)
+ plt.plot(epochs, loss_values, "bo", label="Training Loss")
+ plt.plot(epochs, val_loss_values, "b", label="Validation Loss")
+ plt.title("training and validation loss")
+ plt.xlabel("Epochs")
+ plt.ylabel("Loss")
+ plt.legend()
+ plt.show()
+
+def plot_acc(history):
+ history_dic = history.history
+ acc_values = history_dic["acc"]
+ val_acc_values = history_dic["val_acc"]
+ epochs = range(1, len(history_dic["acc"]) + 1)
+ plt.plot(epochs, acc_values, "bo", label="Training Acc")
+ plt.plot(epochs, val_acc_values, "b", label="Validation Acc")
+ plt.title("training and validation acc")
+ plt.xlabel("Epochs")
+ plt.ylabel("Acc")
+ plt.legend()
+ plt.show()
+
+# write code here
+def premain(argparser):
+ signal.signal(signal.SIGINT, SigHandler_SIGINT)
+ #here
+ (train_data, train_labels), (test_data, test_labels) = reuters.load_data(num_words=10000)
+ #print(len(train_data))
+ #print(len(test_data))
+ x_train = vectorize_sequences(train_data)
+ x_test = vectorize_sequences(test_data)
+ #one_hot_train_labels = to_one_hot(train_labels)
+ #one_hot_test_labels = to_one_hot(test_labels)
+ one_hot_train_labels = to_categorical(train_labels)
+ one_hot_test_labels = to_categorical(test_labels)
+
+ model = models.Sequential()
+ model.add(layers.Dense(64, activation="relu", input_shape=(10000,)))
+ #model.add(layers.Dense(64, activation="relu"))
+ model.add(layers.Dense(46, activation="softmax"))
+ model.compile(optimizer="rmsprop", loss="categorical_crossentropy", metrics=["accuracy"])
+
+ x_val = x_train[:1000]
+ partial_x_train = x_train[1000:]
+ y_val = one_hot_train_labels[:1000]
+ partial_y_train = one_hot_train_labels[1000:]
+ history = model.fit(partial_x_train, partial_y_train, epochs=9, batch_size=512, validation_data=(x_val, y_val))
+ '''
+ plot_loss(history)
+ plt.clf()
+ plot_acc(history)
+ '''
+ results = model.evaluate(x_test, one_hot_test_labels)
+ print(results)
+
+ predictions = model.predict(x_test)
+
+
+
+def main():
+ argparser = Argparser()
+ if argparser.args.dbg:
+ try:
+ premain(argparser)
+ except Exception as e:
+ print(e.__doc__)
+ if e.message: print(e.message)
+ variables = globals().copy()
+ variables.update(locals())
+ shell = code.InteractiveConsole(variables)
+ shell.interact(banner="DEBUG REPL")
+ else:
+ premain(argparser)
+
+if __name__ == "__main__":
+ main()
diff --git a/dlstuff/two.py b/dlstuff/two.py
new file mode 100755
index 0000000..9eab134
--- /dev/null
+++ b/dlstuff/two.py
@@ -0,0 +1,109 @@
+#!/usr/bin/python3
+# _*_ coding=utf-8 _*_
+
+import argparse
+import code
+import readline
+import signal
+import sys
+from keras.datasets import imdb
+import numpy as np
+from keras import models
+from keras import layers
+import matplotlib.pyplot as plt
+
+def SigHandler_SIGINT(signum, frame):
+ print()
+ sys.exit(0)
+
+class Argparser(object):
+ def __init__(self):
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--string", type=str, help="string")
+ parser.add_argument("--bool", action="store_true", help="bool", default=False)
+ parser.add_argument("--dbg", action="store_true", help="debug", default=False)
+ self.args = parser.parse_args()
+
+def vectorize_sequences(sequences, dimension=10000):
+ results = np.zeros((len(sequences), dimension))
+ for i, sequence in enumerate(sequences):
+ results[i, sequence] = 1.
+ return results
+
+def plot_loss(history):
+ history_dic = history.history
+ loss_values = history_dic["loss"]
+ val_loss_values = history_dic["val_loss"]
+ epochs = range(1, len(history_dic["loss"]) + 1)
+ plt.plot(epochs, loss_values, "bo", label="Training Loss")
+ plt.plot(epochs, val_loss_values, "b", label="Validation Loss")
+ plt.title("training and validation loss")
+ plt.xlabel("Epochs")
+ plt.ylabel("Loss")
+ plt.legend()
+ plt.show()
+
+def plot_acc(history):
+ history_dic = history.history
+ acc_values = history_dic["acc"]
+ val_acc_values = history_dic["val_acc"]
+ epochs = range(1, len(history_dic["acc"]) + 1)
+ plt.plot(epochs, acc_values, "bo", label="Training Acc")
+ plt.plot(epochs, val_acc_values, "b", label="Validation Acc")
+ plt.title("training and validation acc")
+ plt.xlabel("Epochs")
+ plt.ylabel("Acc")
+ plt.legend()
+ plt.show()
+
+# write code here
+def premain(argparser):
+ signal.signal(signal.SIGINT, SigHandler_SIGINT)
+ #here
+ (train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)
+ x_train = vectorize_sequences(train_data)
+ x_test = vectorize_sequences(test_data)
+ y_train = np.asarray(train_labels).astype("float32")
+ y_test = np.asarray(test_labels).astype("float32")
+
+ model = models.Sequential()
+ model.add(layers.Dense(16, activation="relu", input_shape=(10000,)))
+ model.add(layers.Dense(16, activation="relu"))
+ model.add(layers.Dense(1, activation="sigmoid"))
+
+ x_val = x_train[:10000]
+ partial_x_train = x_train[10000:]
+ y_val = y_train[:10000]
+ partial_y_train = y_train[10000:]
+
+ model.compile(optimizer="rmsprop", loss="binary_crossentropy", metrics=["acc"])
+
+ '''
+ history = model.fit(partial_x_train, partial_y_train, epochs=20, batch_size=512, validation_data=(x_val, y_val))
+ plot_loss(history)
+ plt.clf()
+ plot_acc(history)
+ '''
+
+ model.fit(x_train, y_train, epochs=4, batch_size=512)
+ results = model.evaluate(x_test, y_test)
+ print(results)
+
+
+def main():
+ argparser = Argparser()
+ if argparser.args.dbg:
+ try:
+ premain(argparser)
+ except Exception as e:
+ print(e.__doc__)
+ if e.message: print(e.message)
+ variables = globals().copy()
+ variables.update(locals())
+ shell = code.InteractiveConsole(variables)
+ shell.interact(banner="DEBUG REPL")
+ else:
+ premain(argparser)
+
+if __name__ == "__main__":
+ main()