diff options
| -rwxr-xr-x | lstm.py | 13 | 
1 files changed, 9 insertions, 4 deletions
@@ -22,7 +22,8 @@ from keras.layers import Dropout  from keras.models import load_model  window_len = 10 -split_date = "2018-03-01" +#split_date = "2018-03-01" +split_date = "2017.01.01"  def SigHandler_SIGINT(signum, frame):      print() @@ -57,7 +58,7 @@ def getData_CMC(crypto, crypto_short):      return model_data  def getData_Stock(name, period): -    info = pd.from_csv(path="./data/"+name+"/"+period+".csv") +    info = pd.read_csv("./data/"+name+"/"+period+".csv", encoding="utf-8")      return info  def get_sets(crypto, model_data): @@ -69,7 +70,7 @@ def get_sets(crypto, model_data):      for i in range(len(training_set) - window_len):          temp_set = training_set[i:(i+window_len)].copy()          for col in norm_cols: -            temp_set.loc[:, col] = temp_set[col]/temp_set[col].iloc[0] -1 +            temp_set.loc[:, col] = temp_set[col]/temp_set[col].iloc[0] - 1          LSTM_training_inputs.append(temp_set)      LSTM_training_outputs = (training_set["Close"][window_len:].values/training_set["Close"][:-window_len].values) - 1      LSTM_test_inputs = [] @@ -96,6 +97,9 @@ def build_model(inputs, output_size, neurons, activ_func="linear", dropout=0.25,      model.compile(loss=loss, optimizer=optimizer)      return model +def stock(): +    data = getData_Stock("irxo", "Daily") +  def lstm_type_1(crypto, crypto_short):      model_data = getData_CMC(crypto, crypto_short)      np.random.seed(202) @@ -154,11 +158,12 @@ def load_models(crypto, crypto_short):  def premain(argparser):      signal.signal(signal.SIGINT, SigHandler_SIGINT)      #here -    lstm_type_1("ethereum", "ether") +    #lstm_type_1("ethereum", "ether")      #lstm_type_2("ethereum", "ether", 5, 20)      #lstm_type_3("ethereum", "ether", 5, 20)      #lstm_type_4("ethereum", "ether", "dogecoin", "doge")      #load_models("ethereum", "eth") +    stock()  def main():      argparser = Argparser()  | 
