diff options
Diffstat (limited to 'dlstuff/four.py')
-rwxr-xr-x | dlstuff/four.py | 106 |
1 files changed, 106 insertions, 0 deletions
diff --git a/dlstuff/four.py b/dlstuff/four.py new file mode 100755 index 0000000..983386a --- /dev/null +++ b/dlstuff/four.py @@ -0,0 +1,106 @@ +#!/usr/bin/python3 +# _*_ coding=utf-8 _*_ + +import argparse +import code +import readline +import signal +import sys +import numpy as np +from keras.datasets import boston_housing +from keras import models +from keras import layers +import matplotlib.pyplot as plt +from keras.utils.np_utils import to_categorical + +def SigHandler_SIGINT(signum, frame): + print() + sys.exit(0) + +class Argparser(object): + def __init__(self): + parser = argparse.ArgumentParser() + parser.add_argument("--string", type=str, help="string") + parser.add_argument("--bool", action="store_true", help="bool", default=False) + parser.add_argument("--dbg", action="store_true", help="debug", default=False) + self.args = parser.parse_args() + +def build_model(train_data): + model = models.Sequential() + model.add(layers.Dense(64, activation="relu", input_shape=(train_data.shape[1],))) + model.add(layers.Dense(64, activation="relu")) + model.add(layers.Dense(1)) + model.compile(optimizer="rmsprop", loss="mse", metrics=["mae"]) + return model + +def smooth_curve(points, factor=0.9): + smoothed_points = [] + for point in points: + if smoothed_points: + previous = smoothed_points[-1] + smoothed_points.append(previous*factor+point*(1-factor)) + else: + smoothed_points.append(point) + return smoothed_points + +# write code here +def premain(argparser): + signal.signal(signal.SIGINT, SigHandler_SIGINT) + #here + (train_data, train_targets), (test_data, test_targets) = boston_housing.load_data() + mean = train_data.mean(axis=0) + train_data -= mean + std = train_data.std(axis=0) + train_data /= std + + test_data -= mean + test_data /= std + + k = 4 + num_epochs = 500 + num_val_samples = len(train_data) // k + num_epochs = 100 + all_scores = [] + all_mae_histories = [] + + for i in range(k): + print("processing fold #", i) + val_data = train_data[i*num_val_samples:(i+1)*num_val_samples] + val_targets = train_targets[i*num_val_samples:(i+1)*num_val_samples] + partial_train_data = np.concatenate( + [train_data[:i*num_val_samples], + train_data[(i+1)*num_val_samples:]], axis=0) + partial_train_targets = np.concatenate( + [train_targets[:i*num_val_samples], + train_targets[(i+1)*num_val_samples:]], axis=0) + model = build_model(train_data) + history = model.fit(partial_train_data, partial_train_targets, validation_data=(val_data, val_targets), epochs=num_epochs, batch_size=1, verbose=0) + val_mse, val_mae = model.evaluate(val_data, val_targets, verbose=0) + mae_history = history.history["val_mean_absolute_error"] + all_mae_histories.append(mae_history) + all_scores.append(val_mae) + + average_mae_history = [np.mean([x[i] for x in all_mae_histories]) for i in range(num_epochs)] + smoothed_mae_history = smooth_curve(average_mae_history[10:]) + plt.plot(range(1, len(smoothed_mae_history) + 1), smoothed_mae_history) + plt.xlabel("Epochs") + plt.ylabel("Validation MAE") + plt.show() + +def main(): + argparser = Argparser() + if argparser.args.dbg: + try: + premain(argparser) + except Exception as e: + print(e.__doc__) + if e.message: print(e.message) + variables = globals().copy() + variables.update(locals()) + shell = code.InteractiveConsole(variables) + shell.interact(banner="DEBUG REPL") + else: + premain(argparser) + +if __name__ == "__main__": + main() |