diff options
Diffstat (limited to 'dlstuff/three.py')
-rwxr-xr-x | dlstuff/three.py | 119 |
1 files changed, 119 insertions, 0 deletions
diff --git a/dlstuff/three.py b/dlstuff/three.py new file mode 100755 index 0000000..fe6e2ee --- /dev/null +++ b/dlstuff/three.py @@ -0,0 +1,119 @@ +#!/usr/bin/python3 +# _*_ coding=utf-8 _*_ + +import argparse +import code +import readline +import signal +import sys +import numpy as np +from keras.datasets import reuters +from keras import models +from keras import layers +import matplotlib.pyplot as plt +from keras.utils.np_utils import to_categorical + +def SigHandler_SIGINT(signum, frame): + print() + sys.exit(0) + +class Argparser(object): + def __init__(self): + parser = argparse.ArgumentParser() + parser.add_argument("--string", type=str, help="string") + parser.add_argument("--bool", action="store_true", help="bool", default=False) + parser.add_argument("--dbg", action="store_true", help="debug", default=False) + self.args = parser.parse_args() + +def vectorize_sequences(sequences, dimension=10000): + results = np.zeros((len(sequences), dimension)) + for i, sequence in enumerate(sequences): + results[i, sequence] = 1. + return results + +def to_one_hot(labels, dimension=46): + results = np.zeros((len(sequences), dimension)) + for i, label in enumerate(labels): + results[i, label] = 1. + return results + +def plot_loss(history): + history_dic = history.history + loss_values = history_dic["loss"] + val_loss_values = history_dic["val_loss"] + epochs = range(1, len(history_dic["loss"]) + 1) + plt.plot(epochs, loss_values, "bo", label="Training Loss") + plt.plot(epochs, val_loss_values, "b", label="Validation Loss") + plt.title("training and validation loss") + plt.xlabel("Epochs") + plt.ylabel("Loss") + plt.legend() + plt.show() + +def plot_acc(history): + history_dic = history.history + acc_values = history_dic["acc"] + val_acc_values = history_dic["val_acc"] + epochs = range(1, len(history_dic["acc"]) + 1) + plt.plot(epochs, acc_values, "bo", label="Training Acc") + plt.plot(epochs, val_acc_values, "b", label="Validation Acc") + plt.title("training and validation acc") + plt.xlabel("Epochs") + plt.ylabel("Acc") + plt.legend() + plt.show() + +# write code here +def premain(argparser): + signal.signal(signal.SIGINT, SigHandler_SIGINT) + #here + (train_data, train_labels), (test_data, test_labels) = reuters.load_data(num_words=10000) + #print(len(train_data)) + #print(len(test_data)) + x_train = vectorize_sequences(train_data) + x_test = vectorize_sequences(test_data) + #one_hot_train_labels = to_one_hot(train_labels) + #one_hot_test_labels = to_one_hot(test_labels) + one_hot_train_labels = to_categorical(train_labels) + one_hot_test_labels = to_categorical(test_labels) + + model = models.Sequential() + model.add(layers.Dense(64, activation="relu", input_shape=(10000,))) + #model.add(layers.Dense(64, activation="relu")) + model.add(layers.Dense(46, activation="softmax")) + model.compile(optimizer="rmsprop", loss="categorical_crossentropy", metrics=["accuracy"]) + + x_val = x_train[:1000] + partial_x_train = x_train[1000:] + y_val = one_hot_train_labels[:1000] + partial_y_train = one_hot_train_labels[1000:] + history = model.fit(partial_x_train, partial_y_train, epochs=9, batch_size=512, validation_data=(x_val, y_val)) + ''' + plot_loss(history) + plt.clf() + plot_acc(history) + ''' + results = model.evaluate(x_test, one_hot_test_labels) + print(results) + + predictions = model.predict(x_test) + + + +def main(): + argparser = Argparser() + if argparser.args.dbg: + try: + premain(argparser) + except Exception as e: + print(e.__doc__) + if e.message: print(e.message) + variables = globals().copy() + variables.update(locals()) + shell = code.InteractiveConsole(variables) + shell.interact(banner="DEBUG REPL") + else: + premain(argparser) + +if __name__ == "__main__": + main() |