aboutsummaryrefslogtreecommitdiffstats
path: root/dlstuff/two.py
diff options
context:
space:
mode:
Diffstat (limited to 'dlstuff/two.py')
-rwxr-xr-xdlstuff/two.py109
1 files changed, 109 insertions, 0 deletions
diff --git a/dlstuff/two.py b/dlstuff/two.py
new file mode 100755
index 0000000..9eab134
--- /dev/null
+++ b/dlstuff/two.py
@@ -0,0 +1,109 @@
+#!/usr/bin/python3
+# _*_ coding=utf-8 _*_
+
+import argparse
+import code
+import readline
+import signal
+import sys
+from keras.datasets import imdb
+import numpy as np
+from keras import models
+from keras import layers
+import matplotlib.pyplot as plt
+
+def SigHandler_SIGINT(signum, frame):
+ print()
+ sys.exit(0)
+
+class Argparser(object):
+ def __init__(self):
+ parser = argparse.ArgumentParser()
+ parser.add_argument("--string", type=str, help="string")
+ parser.add_argument("--bool", action="store_true", help="bool", default=False)
+ parser.add_argument("--dbg", action="store_true", help="debug", default=False)
+ self.args = parser.parse_args()
+
+def vectorize_sequences(sequences, dimension=10000):
+ results = np.zeros((len(sequences), dimension))
+ for i, sequence in enumerate(sequences):
+ results[i, sequence] = 1.
+ return results
+
+def plot_loss(history):
+ history_dic = history.history
+ loss_values = history_dic["loss"]
+ val_loss_values = history_dic["val_loss"]
+ epochs = range(1, len(history_dic["loss"]) + 1)
+ plt.plot(epochs, loss_values, "bo", label="Training Loss")
+ plt.plot(epochs, val_loss_values, "b", label="Validation Loss")
+ plt.title("training and validation loss")
+ plt.xlabel("Epochs")
+ plt.ylabel("Loss")
+ plt.legend()
+ plt.show()
+
+def plot_acc(history):
+ history_dic = history.history
+ acc_values = history_dic["acc"]
+ val_acc_values = history_dic["val_acc"]
+ epochs = range(1, len(history_dic["acc"]) + 1)
+ plt.plot(epochs, acc_values, "bo", label="Training Acc")
+ plt.plot(epochs, val_acc_values, "b", label="Validation Acc")
+ plt.title("training and validation acc")
+ plt.xlabel("Epochs")
+ plt.ylabel("Acc")
+ plt.legend()
+ plt.show()
+
+# write code here
+def premain(argparser):
+ signal.signal(signal.SIGINT, SigHandler_SIGINT)
+ #here
+ (train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)
+ x_train = vectorize_sequences(train_data)
+ x_test = vectorize_sequences(test_data)
+ y_train = np.asarray(train_labels).astype("float32")
+ y_test = np.asarray(test_labels).astype("float32")
+
+ model = models.Sequential()
+ model.add(layers.Dense(16, activation="relu", input_shape=(10000,)))
+ model.add(layers.Dense(16, activation="relu"))
+ model.add(layers.Dense(1, activation="sigmoid"))
+
+ x_val = x_train[:10000]
+ partial_x_train = x_train[10000:]
+ y_val = y_train[:10000]
+ partial_y_train = y_train[10000:]
+
+ model.compile(optimizer="rmsprop", loss="binary_crossentropy", metrics=["acc"])
+
+ '''
+ history = model.fit(partial_x_train, partial_y_train, epochs=20, batch_size=512, validation_data=(x_val, y_val))
+ plot_loss(history)
+ plt.clf()
+ plot_acc(history)
+ '''
+
+ model.fit(x_train, y_train, epochs=4, batch_size=512)
+ results = model.evaluate(x_test, y_test)
+ print(results)
+
+
+def main():
+ argparser = Argparser()
+ if argparser.args.dbg:
+ try:
+ premain(argparser)
+ except Exception as e:
+ print(e.__doc__)
+ if e.message: print(e.message)
+ variables = globals().copy()
+ variables.update(locals())
+ shell = code.InteractiveConsole(variables)
+ shell.interact(banner="DEBUG REPL")
+ else:
+ premain(argparser)
+
+if __name__ == "__main__":
+ main()