1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
|
#!/usr/bin/python3
# _*_ coding=utf-8 _*_
# original source-https://medium.com/@huangkh19951228/predicting-cryptocurrency-price-with-tensorflow-and-keras-e1674b0dc58a
import argparse
import code
import readline
import signal
import sys
import json
import numpy as np
import os
import pandas as pd
import urllib3
import requests
from pathlib import Path
from sklearn.preprocessing import MinMaxScaler
import h5py
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten, Reshape
from keras.layers import Conv1D, MaxPooling1D, LeakyReLU, PReLU
from keras.layers import LSTM
from keras.utils import np_utils
from keras.callbacks import CSVLogger, ModelCheckpoint
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
def SigHandler_SIGINT(signum, frame):
print()
sys.exit(0)
class Argparser(object):
def __init__(self):
parser = argparse.ArgumentParser()
parser.add_argument("--string", type=str, help="string")
parser.add_argument("--bool", action="store_true", help="bool", default=False)
parser.add_argument("--dbg", action="store_true", help="debug", default=False)
self.args = parser.parse_args()
class PastSampler(object):
def __init__(self, N, K, sliding_window=True):
self.N = N
self.K = K
self.sliding_window = sliding_window
def transform(self, A):
M = self.N + self.K
if self.sliding_window:
I = np.arange(M) + np.arange(A.shape[0] - M + 1).reshape(-1,1)
else:
if A.shape[0]%M == 0:
I = np.arange(M) + np.arange(0, A.shape[0], M).reshape(-1,1)
else:
I = np.arange(M) + np.arange(0, A.shape[0] - M, M).reshape(-1,1)
B = A[I].reshape(-1, M*A.shape[1], A.shape[2])
ci = self.N*A.shape[1]
return B[:, :ci], B[:, ci:]
def getData(symbol_str):
data_file = Path("./cnn/" + symbol_str + ".csv")
original_columns =["close", "date", "high", "low", "open"]
new_columns = ["Close", "Timestamp", "High", "Low", "Open"]
columns = ["Close"]
url = "https://poloniex.com/public?command=returnChartData¤cyPair=USDT_" + symbol_str + "&start=1356998100&end=9999999999&period=300"
r = requests.get(url)
d = json.loads(r.content.decode("utf-8"))
df = pd.DataFrame(d)
df = df.loc[:, original_columns]
df.columns = new_columns
df.to_csv("./cnn/" + symbol_str + ".csv", index=None)
df = pd.read_csv(data_file)
time_stamps = df["Timestamp"]
df = df.loc[:, columns]
original_df = pd.read_csv(data_file).loc[:, columns]
return df, original_df, time_stamps
def Scaler(df, original_df, time_stamps, symbol_str):
file_name="./cnn/" + symbol_str + "_close.h5"
scaler = MinMaxScaler()
columns= ["Close"]
for c in columns:
df[c] = scaler.fit_transform(df[c].values.reshape(-1,1))
A = np.array(df)[:,None,:]
original_A = np.array(original_df)[:,None,:]
time_stamps = np.array(time_stamps)[:,None,None]
NPS, NFS = 256, 16
ps = PastSampler(NPS, NFS, sliding_window=False)
B, Y = ps.transform(A)
input_times, output_times = ps.transform(time_stamps)
original_B, original_Y = ps.transform(original_A)
with h5py.File(file_name, "w") as f:
f.create_dataset("inputs", data=B)
f.create_dataset("outputs", data=Y)
f.create_dataset("input_times", data=input_times)
f.create_dataset("output_times", data=output_times)
f.create_dataset("original_datas", data=np.array(original_df))
f.create_dataset("original_inputs", data=original_B)
f.create_dataset("original_outputs", data=original_Y)
def cnn_type_1(symbol_str):
df, original_df, time_stamps = getData(symbol_str)
Scaler(df, original_df, time_stamps, symbol_str)
# run on gpu
'''
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
'''
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
set_session(tf.Session(config=config))
with h5py.File("".join("./cnn/" + symbol_str + "_close.h5"), "r") as hf:
datas = hf["inputs"].value
labels = hf["outputs"].value
output_file_name = "cnn/" + symbol_str + "_CNN_2_relu"
step_size = datas.shape[1]
batch_size = 8
nb_features = datas.shape[2]
epochs = 100
#split training validation
training_size = int(0.8* datas.shape[0])
training_datas = datas[:training_size,:]
training_labels = labels[:training_size,:]
validation_datas = datas[training_size:,:]
validation_labels = labels[training_size:,:]
model = Sequential()
# 2 Layers
model.add(Conv1D(activation='relu', input_shape=(step_size, nb_features), strides=3, filters=8, kernel_size=20))
model.add(Dropout(0.5))
model.add(Conv1D( strides=4, filters=nb_features, kernel_size=16))
'''
# 3 Layers
model.add(Conv1D(activation='relu', input_shape=(step_size, nb_features), strides=3, filters=8, kernel_size=8))
#model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Conv1D(activation='relu', strides=2, filters=8, kernel_size=8))
#model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Conv1D( strides=2, filters=nb_features, kernel_size=8))
# 4 layers
model.add(Conv1D(activation='relu', input_shape=(step_size, nb_features), strides=2, filters=8, kernel_size=2))
#model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Conv1D(activation='relu', strides=2, filters=8, kernel_size=2))
#model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Conv1D(activation='relu', strides=2, filters=8, kernel_size=2))
#model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Conv1D( strides=2, filters=nb_features, kernel_size=2))
'''
model.compile(loss='mse', optimizer='adam')
model.fit(training_datas, training_labels,verbose=1, batch_size=batch_size,validation_data=(validation_datas,validation_labels), epochs = epochs, callbacks=[CSVLogger(output_file_name+'.csv', append=True),ModelCheckpoint(output_file_name+'-{epoch:02d}-{val_loss:.5f}.hdf5', monitor='val_loss', verbose=1,mode='min')])
def lstm_type_cnn_1(symbol_str):
df, original_df, time_stamps = getData(symbol_str)
Scaler(df, original_df, time_stamps, symbol_str)
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
set_session(tf.Session(config=config))
with h5py.File("".join("./cnn/" + symbol_str + "_close.h5"), "r") as hf:
datas = hf['inputs'].value
labels = hf['outputs'].value
step_size = datas.shape[1]
units= 50
second_units = 30
batch_size = 8
nb_features = datas.shape[2]
epochs = 100
output_size=16
output_file_name = "cnn/" + symbol_str + "_CNN_LSTM_2_relu"
#split training validation
training_size = int(0.8* datas.shape[0])
training_datas = datas[:training_size,:]
training_labels = labels[:training_size,:,0]
validation_datas = datas[training_size:,:]
validation_labels = labels[training_size:,:,0]
#build model
model = Sequential()
model.add(LSTM(units=units,activation='tanh', input_shape=(step_size,nb_features),return_sequences=False))
model.add(Dropout(0.8))
model.add(Dense(output_size))
model.add(LeakyReLU())
model.compile(loss='mse', optimizer='adam')
model.fit(training_datas, training_labels, batch_size=batch_size,validation_data=(validation_datas,validation_labels), epochs = epochs, callbacks=[CSVLogger(output_file_name+'.csv', append=True),ModelCheckpoint(output_file_name+'-{epoch:02d}-{val_loss:.5f}.hdf5', monitor='val_loss', verbose=1,mode='min')])
# write code here
def premain(argparser):
signal.signal(signal.SIGINT, SigHandler_SIGINT)
#here
#cnn_type_1("ETH")
lstm_type_cnn_1("ETH")
def main():
argparser = Argparser()
if argparser.args.dbg:
try:
premain(argparser)
except Exception as e:
print(e.__doc__)
if e.message: print(e.message)
variables = globals().copy()
variables.update(locals())
shell = code.InteractiveConsole(variables)
shell.interact(banner="DEBUG REPL")
else:
premain(argparser)
if __name__ == "__main__":
main()
|