1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
#!/usr/bin/python3
# _*_ coding=utf-8 _*_
import argparse
import code
import readline
import signal
import sys
import pandas
from pandas import scatter_matrix
import matplotlib.pyplot as plt
from sklearn import model_selection
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
def SigHandler_SIGINT(signum, frame):
print()
sys.exit(0)
class Argparser(object):
def __init__(self):
parser = argparse.ArgumentParser()
parser.add_argument("--string", type=str, help="string")
parser.add_argument(
"--bool", action="store_true", help="bool", default=False
)
parser.add_argument(
"--dbg", action="store_true", help="debug", default=False
)
self.args = parser.parse_args()
def marrionette_type_1():
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data"
names = [
"sepal-length",
"sepal-width",
"petal-length",
"petal-width",
"class",
]
dataset = pandas.read_csv(url, names=names)
print(dataset.shape)
print(dataset.head(20))
print(dataset.describe())
print(dataset.groupby("class").size())
# dataset.plot(kind="box", subplots=True, layout=(2,2), sharex=False, sharey=False)
# dataset.hist()
pandas.plotting.scatter_matrix(dataset)
plt.show()
array = dataset.values
X = array[:, 0:4]
Y = array[:, 4]
validation_size = 0.20
seed = 7
(
X_train,
X_validation,
Y_train,
Y_validation,
) = model_selection.train_test_split(
X, Y, test_size=validation_size, random_state=seed
)
scoring = "accuracy"
models = []
models.append(("LR", LogisticRegression()))
models.append(("LDA", LinearDiscriminantAnalysis()))
models.append(("KNN", KNeighborsClassifier()))
models.append(("CART", DecisionTreeClassifier()))
models.append(("NB", GaussianNB()))
models.append(("SVM", SVC()))
results = []
names = []
for name, model in models:
kfold = model_selection.KFold(n_splits=10, random_state=seed)
cv_results = model_selection.cross_val_score(
model, X_train, Y_train, cv=kfold, scoring=scoring
)
results.append(cv_results)
names.append(name)
msg = "%s:%f(%f)" % (name, cv_results.mean(), cv_results.std())
print(msg)
fig = plt.figure()
fig.suptitle("algorithm comparison")
ax = fig.add_subplot(111)
plt.boxplot(results)
ax.set_xticklabels(names)
plt.show()
# knn
knn = KNeighborsClassifier()
knn.fit(X_train, Y_train)
predictions = knn.predict(X_validation)
print(accuracy_score(Y_validation, predictions))
print(confusion_matrix(Y_validation, predictions))
print(classification_report(Y_validation, predictions))
# write code here
def premain(argparser):
signal.signal(signal.SIGINT, SigHandler_SIGINT)
# here
marrionette_type_1()
def main():
argparser = Argparser()
if argparser.args.dbg:
try:
premain(argparser)
except:
variables = globals().copy()
variables.update(locals())
shell = code.InteractiveConsole(variables)
shell.interact(banner="DEBUG REPL")
else:
premain(argparser)
if __name__ == "__main__":
main()
|