diff options
author | Akinori Ito <aito@eie.yz.yamagata-u.ac.jp> | 2001-11-08 05:14:08 +0000 |
---|---|---|
committer | Akinori Ito <aito@eie.yz.yamagata-u.ac.jp> | 2001-11-08 05:14:08 +0000 |
commit | 68a07bf03b7624c9924065cce9ffa45497225834 (patch) | |
tree | c2adb06a909a8594445e4a3f8587c4bad46e3ecd /gc/os_dep.c | |
download | w3m-68a07bf03b7624c9924065cce9ffa45497225834.tar.gz w3m-68a07bf03b7624c9924065cce9ffa45497225834.zip |
Initial revision
Diffstat (limited to '')
-rw-r--r-- | gc/os_dep.c | 2461 |
1 files changed, 2461 insertions, 0 deletions
diff --git a/gc/os_dep.c b/gc/os_dep.c new file mode 100644 index 0000000..0236248 --- /dev/null +++ b/gc/os_dep.c @@ -0,0 +1,2461 @@ +/* + * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved. + * Copyright (c) 1996-1997 by Silicon Graphics. All rights reserved. + * + * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED + * OR IMPLIED. ANY USE IS AT YOUR OWN RISK. + * + * Permission is hereby granted to use or copy this program + * for any purpose, provided the above notices are retained on all copies. + * Permission to modify the code and to distribute modified code is granted, + * provided the above notices are retained, and a notice that the code was + * modified is included with the above copyright notice. + */ + +# include "gc_priv.h" + +# if defined(LINUX) && !defined(POWERPC) +# include <linux/version.h> +# if (LINUX_VERSION_CODE <= 0x10400) + /* Ugly hack to get struct sigcontext_struct definition. Required */ + /* for some early 1.3.X releases. Will hopefully go away soon. */ + /* in some later Linux releases, asm/sigcontext.h may have to */ + /* be included instead. */ +# define __KERNEL__ +# include <asm/signal.h> +# undef __KERNEL__ +# else + /* Kernels prior to 2.1.1 defined struct sigcontext_struct instead of */ + /* struct sigcontext. libc6 (glibc2) uses "struct sigcontext" in */ + /* prototypes, so we have to include the top-level sigcontext.h to */ + /* make sure the former gets defined to be the latter if appropriate. */ +# include <features.h> +# if 2 <= __GLIBC__ +# if 0 == __GLIBC_MINOR__ + /* glibc 2.1 no longer has sigcontext.h. But signal.h */ + /* has the right declaration for glibc 2.1. */ +# include <sigcontext.h> +# endif /* 0 == __GLIBC_MINOR__ */ +# else /* not 2 <= __GLIBC__ */ + /* libc5 doesn't have <sigcontext.h>: go directly with the kernel */ + /* one. Check LINUX_VERSION_CODE to see which we should reference. */ +# include <asm/sigcontext.h> +# endif /* 2 <= __GLIBC__ */ +# endif +# endif +# if !defined(OS2) && !defined(PCR) && !defined(AMIGA) && !defined(MACOS) +# include <sys/types.h> +# if !defined(MSWIN32) && !defined(SUNOS4) +# include <unistd.h> +# endif +# endif + +# include <stdio.h> +# include <signal.h> + +/* Blatantly OS dependent routines, except for those that are related */ +/* dynamic loading. */ + +# if !defined(THREADS) && !defined(STACKBOTTOM) && defined(HEURISTIC2) +# define NEED_FIND_LIMIT +# endif + +# if defined(IRIX_THREADS) +# define NEED_FIND_LIMIT +# endif + +# if (defined(SUNOS4) & defined(DYNAMIC_LOADING)) && !defined(PCR) +# define NEED_FIND_LIMIT +# endif + +# if (defined(SVR4) || defined(AUX) || defined(DGUX)) && !defined(PCR) +# define NEED_FIND_LIMIT +# endif + +# if defined(LINUX) && (defined(POWERPC) || defined(SPARC) || \ + defined(ALPHA) || defined(MIPS)) +# define NEED_FIND_LIMIT +# endif + +#ifdef NEED_FIND_LIMIT +# include <setjmp.h> +#endif + +#ifdef FREEBSD +# include <machine/trap.h> +#endif + +#ifdef AMIGA +# include <proto/exec.h> +# include <proto/dos.h> +# include <dos/dosextens.h> +# include <workbench/startup.h> +#endif + +#ifdef MSWIN32 +# define WIN32_LEAN_AND_MEAN +# define NOSERVICE +# include <windows.h> +#endif + +#ifdef MACOS +# include <Processes.h> +#endif + +#ifdef IRIX5 +# include <sys/uio.h> +# include <malloc.h> /* for locking */ +#endif +#ifdef USE_MMAP +# include <sys/types.h> +# include <sys/mman.h> +# include <sys/stat.h> +# include <fcntl.h> +#endif + +#ifdef SUNOS5SIGS +# include <sys/siginfo.h> +# undef setjmp +# undef longjmp +# define setjmp(env) sigsetjmp(env, 1) +# define longjmp(env, val) siglongjmp(env, val) +# define jmp_buf sigjmp_buf +#endif + +#ifdef DJGPP + /* Apparently necessary for djgpp 2.01. May casuse problems with */ + /* other versions. */ + typedef long unsigned int caddr_t; +#endif + +#ifdef PCR +# include "il/PCR_IL.h" +# include "th/PCR_ThCtl.h" +# include "mm/PCR_MM.h" +#endif + +#if !defined(NO_EXECUTE_PERMISSION) +# define OPT_PROT_EXEC PROT_EXEC +#else +# define OPT_PROT_EXEC 0 +#endif + +#if defined(LINUX) && (defined(POWERPC) || defined(SPARC) || \ + defined(ALPHA) || defined(MIPS)) + /* The I386 case can be handled without a search. The Alpha case */ + /* used to be handled differently as well, but the rules changed */ + /* for recent Linux versions. This seems to be the easiest way to */ + /* cover all versions. */ + ptr_t GC_data_start; + + extern char * GC_copyright[]; /* Any data symbol would do. */ + + void GC_init_linux_data_start() + { + extern ptr_t GC_find_limit(); + + GC_data_start = GC_find_limit((ptr_t)GC_copyright, FALSE); + } +#endif + +# ifdef OS2 + +# include <stddef.h> + +# if !defined(__IBMC__) && !defined(__WATCOMC__) /* e.g. EMX */ + +struct exe_hdr { + unsigned short magic_number; + unsigned short padding[29]; + long new_exe_offset; +}; + +#define E_MAGIC(x) (x).magic_number +#define EMAGIC 0x5A4D +#define E_LFANEW(x) (x).new_exe_offset + +struct e32_exe { + unsigned char magic_number[2]; + unsigned char byte_order; + unsigned char word_order; + unsigned long exe_format_level; + unsigned short cpu; + unsigned short os; + unsigned long padding1[13]; + unsigned long object_table_offset; + unsigned long object_count; + unsigned long padding2[31]; +}; + +#define E32_MAGIC1(x) (x).magic_number[0] +#define E32MAGIC1 'L' +#define E32_MAGIC2(x) (x).magic_number[1] +#define E32MAGIC2 'X' +#define E32_BORDER(x) (x).byte_order +#define E32LEBO 0 +#define E32_WORDER(x) (x).word_order +#define E32LEWO 0 +#define E32_CPU(x) (x).cpu +#define E32CPU286 1 +#define E32_OBJTAB(x) (x).object_table_offset +#define E32_OBJCNT(x) (x).object_count + +struct o32_obj { + unsigned long size; + unsigned long base; + unsigned long flags; + unsigned long pagemap; + unsigned long mapsize; + unsigned long reserved; +}; + +#define O32_FLAGS(x) (x).flags +#define OBJREAD 0x0001L +#define OBJWRITE 0x0002L +#define OBJINVALID 0x0080L +#define O32_SIZE(x) (x).size +#define O32_BASE(x) (x).base + +# else /* IBM's compiler */ + +/* A kludge to get around what appears to be a header file bug */ +# ifndef WORD +# define WORD unsigned short +# endif +# ifndef DWORD +# define DWORD unsigned long +# endif + +# define EXE386 1 +# include <newexe.h> +# include <exe386.h> + +# endif /* __IBMC__ */ + +# define INCL_DOSEXCEPTIONS +# define INCL_DOSPROCESS +# define INCL_DOSERRORS +# define INCL_DOSMODULEMGR +# define INCL_DOSMEMMGR +# include <os2.h> + + +/* Disable and enable signals during nontrivial allocations */ + +void GC_disable_signals(void) +{ + ULONG nest; + + DosEnterMustComplete(&nest); + if (nest != 1) ABORT("nested GC_disable_signals"); +} + +void GC_enable_signals(void) +{ + ULONG nest; + + DosExitMustComplete(&nest); + if (nest != 0) ABORT("GC_enable_signals"); +} + + +# else + +# if !defined(PCR) && !defined(AMIGA) && !defined(MSWIN32) \ + && !defined(MACOS) && !defined(DJGPP) && !defined(DOS4GW) + +# if defined(sigmask) && !defined(UTS4) + /* Use the traditional BSD interface */ +# define SIGSET_T int +# define SIG_DEL(set, signal) (set) &= ~(sigmask(signal)) +# define SIG_FILL(set) (set) = 0x7fffffff + /* Setting the leading bit appears to provoke a bug in some */ + /* longjmp implementations. Most systems appear not to have */ + /* a signal 32. */ +# define SIGSETMASK(old, new) (old) = sigsetmask(new) +# else + /* Use POSIX/SYSV interface */ +# define SIGSET_T sigset_t +# define SIG_DEL(set, signal) sigdelset(&(set), (signal)) +# define SIG_FILL(set) sigfillset(&set) +# define SIGSETMASK(old, new) sigprocmask(SIG_SETMASK, &(new), &(old)) +# endif + +static GC_bool mask_initialized = FALSE; + +static SIGSET_T new_mask; + +static SIGSET_T old_mask; + +static SIGSET_T dummy; + +#if defined(PRINTSTATS) && !defined(THREADS) +# define CHECK_SIGNALS + int GC_sig_disabled = 0; +#endif + +void GC_disable_signals() +{ + if (!mask_initialized) { + SIG_FILL(new_mask); + + SIG_DEL(new_mask, SIGSEGV); + SIG_DEL(new_mask, SIGILL); + SIG_DEL(new_mask, SIGQUIT); +# ifdef SIGBUS + SIG_DEL(new_mask, SIGBUS); +# endif +# ifdef SIGIOT + SIG_DEL(new_mask, SIGIOT); +# endif +# ifdef SIGEMT + SIG_DEL(new_mask, SIGEMT); +# endif +# ifdef SIGTRAP + SIG_DEL(new_mask, SIGTRAP); +# endif + mask_initialized = TRUE; + } +# ifdef CHECK_SIGNALS + if (GC_sig_disabled != 0) ABORT("Nested disables"); + GC_sig_disabled++; +# endif + SIGSETMASK(old_mask,new_mask); +} + +void GC_enable_signals() +{ +# ifdef CHECK_SIGNALS + if (GC_sig_disabled != 1) ABORT("Unmatched enable"); + GC_sig_disabled--; +# endif + SIGSETMASK(dummy,old_mask); +} + +# endif /* !PCR */ + +# endif /*!OS/2 */ + +/* Ivan Demakov: simplest way (to me) */ +#ifdef DOS4GW + void GC_disable_signals() { } + void GC_enable_signals() { } +#endif + +/* Find the page size */ +word GC_page_size; + +# ifdef MSWIN32 + void GC_setpagesize() + { + SYSTEM_INFO sysinfo; + + GetSystemInfo(&sysinfo); + GC_page_size = sysinfo.dwPageSize; + } + +# else +# if defined(MPROTECT_VDB) || defined(PROC_VDB) || defined(USE_MMAP) \ + || defined(USE_MUNMAP) + void GC_setpagesize() + { + GC_page_size = GETPAGESIZE(); + } +# else + /* It's acceptable to fake it. */ + void GC_setpagesize() + { + GC_page_size = HBLKSIZE; + } +# endif +# endif + +/* + * Find the base of the stack. + * Used only in single-threaded environment. + * With threads, GC_mark_roots needs to know how to do this. + * Called with allocator lock held. + */ +# ifdef MSWIN32 +# define is_writable(prot) ((prot) == PAGE_READWRITE \ + || (prot) == PAGE_WRITECOPY \ + || (prot) == PAGE_EXECUTE_READWRITE \ + || (prot) == PAGE_EXECUTE_WRITECOPY) +/* Return the number of bytes that are writable starting at p. */ +/* The pointer p is assumed to be page aligned. */ +/* If base is not 0, *base becomes the beginning of the */ +/* allocation region containing p. */ +word GC_get_writable_length(ptr_t p, ptr_t *base) +{ + MEMORY_BASIC_INFORMATION buf; + word result; + word protect; + + result = VirtualQuery(p, &buf, sizeof(buf)); + if (result != sizeof(buf)) ABORT("Weird VirtualQuery result"); + if (base != 0) *base = (ptr_t)(buf.AllocationBase); + protect = (buf.Protect & ~(PAGE_GUARD | PAGE_NOCACHE)); + if (!is_writable(protect)) { + return(0); + } + if (buf.State != MEM_COMMIT) return(0); + return(buf.RegionSize); +} + +ptr_t GC_get_stack_base() +{ + int dummy; + ptr_t sp = (ptr_t)(&dummy); + ptr_t trunc_sp = (ptr_t)((word)sp & ~(GC_page_size - 1)); + word size = GC_get_writable_length(trunc_sp, 0); + + return(trunc_sp + size); +} + + +# else + +# ifdef OS2 + +ptr_t GC_get_stack_base() +{ + PTIB ptib; + PPIB ppib; + + if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) { + GC_err_printf0("DosGetInfoBlocks failed\n"); + ABORT("DosGetInfoBlocks failed\n"); + } + return((ptr_t)(ptib -> tib_pstacklimit)); +} + +# else + +# ifdef AMIGA + +ptr_t GC_get_stack_base() +{ + struct Process *proc = (struct Process*)SysBase->ThisTask; + + /* Reference: Amiga Guru Book Pages: 42,567,574 */ + if (proc->pr_Task.tc_Node.ln_Type==NT_PROCESS + && proc->pr_CLI != NULL) { + /* first ULONG is StackSize */ + /*longPtr = proc->pr_ReturnAddr; + size = longPtr[0];*/ + + return (char *)proc->pr_ReturnAddr + sizeof(ULONG); + } else { + return (char *)proc->pr_Task.tc_SPUpper; + } +} + +#if 0 /* old version */ +ptr_t GC_get_stack_base() +{ + extern struct WBStartup *_WBenchMsg; + extern long __base; + extern long __stack; + struct Task *task; + struct Process *proc; + struct CommandLineInterface *cli; + long size; + + if ((task = FindTask(0)) == 0) { + GC_err_puts("Cannot find own task structure\n"); + ABORT("task missing"); + } + proc = (struct Process *)task; + cli = BADDR(proc->pr_CLI); + + if (_WBenchMsg != 0 || cli == 0) { + size = (char *)task->tc_SPUpper - (char *)task->tc_SPLower; + } else { + size = cli->cli_DefaultStack * 4; + } + return (ptr_t)(__base + GC_max(size, __stack)); +} +#endif /* 0 */ + +# else /* !AMIGA, !OS2, ... */ + +# ifdef NEED_FIND_LIMIT + /* Some tools to implement HEURISTIC2 */ +# define MIN_PAGE_SIZE 256 /* Smallest conceivable page size, bytes */ + /* static */ jmp_buf GC_jmp_buf; + + /*ARGSUSED*/ + void GC_fault_handler(sig) + int sig; + { + longjmp(GC_jmp_buf, 1); + } + +# ifdef __STDC__ + typedef void (*handler)(int); +# else + typedef void (*handler)(); +# endif + +# if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1) + static struct sigaction old_segv_act; +# if defined(_sigargs) /* !Irix6.x */ + static struct sigaction old_bus_act; +# endif +# else + static handler old_segv_handler, old_bus_handler; +# endif + + void GC_setup_temporary_fault_handler() + { +# if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1) + struct sigaction act; + + act.sa_handler = GC_fault_handler; + act.sa_flags = SA_RESTART | SA_NODEFER; + /* The presence of SA_NODEFER represents yet another gross */ + /* hack. Under Solaris 2.3, siglongjmp doesn't appear to */ + /* interact correctly with -lthread. We hide the confusion */ + /* by making sure that signal handling doesn't affect the */ + /* signal mask. */ + + (void) sigemptyset(&act.sa_mask); +# ifdef IRIX_THREADS + /* Older versions have a bug related to retrieving and */ + /* and setting a handler at the same time. */ + (void) sigaction(SIGSEGV, 0, &old_segv_act); + (void) sigaction(SIGSEGV, &act, 0); +# else + (void) sigaction(SIGSEGV, &act, &old_segv_act); +# ifdef _sigargs /* Irix 5.x, not 6.x */ + /* Under 5.x, we may get SIGBUS. */ + /* Pthreads doesn't exist under 5.x, so we don't */ + /* have to worry in the threads case. */ + (void) sigaction(SIGBUS, &act, &old_bus_act); +# endif +# endif /* IRIX_THREADS */ +# else + old_segv_handler = signal(SIGSEGV, GC_fault_handler); +# ifdef SIGBUS + old_bus_handler = signal(SIGBUS, GC_fault_handler); +# endif +# endif + } + + void GC_reset_fault_handler() + { +# if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1) + (void) sigaction(SIGSEGV, &old_segv_act, 0); +# ifdef _sigargs /* Irix 5.x, not 6.x */ + (void) sigaction(SIGBUS, &old_bus_act, 0); +# endif +# else + (void) signal(SIGSEGV, old_segv_handler); +# ifdef SIGBUS + (void) signal(SIGBUS, old_bus_handler); +# endif +# endif + } + + /* Return the first nonaddressible location > p (up) or */ + /* the smallest location q s.t. [q,p] is addressible (!up). */ + ptr_t GC_find_limit(p, up) + ptr_t p; + GC_bool up; + { + static VOLATILE ptr_t result; + /* Needs to be static, since otherwise it may not be */ + /* preserved across the longjmp. Can safely be */ + /* static since it's only called once, with the */ + /* allocation lock held. */ + + + GC_setup_temporary_fault_handler(); + if (setjmp(GC_jmp_buf) == 0) { + result = (ptr_t)(((word)(p)) + & ~(MIN_PAGE_SIZE-1)); + for (;;) { + if (up) { + result += MIN_PAGE_SIZE; + } else { + result -= MIN_PAGE_SIZE; + } + GC_noop1((word)(*result)); + } + } + GC_reset_fault_handler(); + if (!up) { + result += MIN_PAGE_SIZE; + } + return(result); + } +# endif + + +ptr_t GC_get_stack_base() +{ + word dummy; + ptr_t result; + +# define STACKBOTTOM_ALIGNMENT_M1 ((word)STACK_GRAN - 1) + +# ifdef STACKBOTTOM + return(STACKBOTTOM); +# else +# ifdef HEURISTIC1 +# ifdef STACK_GROWS_DOWN + result = (ptr_t)((((word)(&dummy)) + + STACKBOTTOM_ALIGNMENT_M1) + & ~STACKBOTTOM_ALIGNMENT_M1); +# else + result = (ptr_t)(((word)(&dummy)) + & ~STACKBOTTOM_ALIGNMENT_M1); +# endif +# endif /* HEURISTIC1 */ +# ifdef HEURISTIC2 +# ifdef STACK_GROWS_DOWN + result = GC_find_limit((ptr_t)(&dummy), TRUE); +# ifdef HEURISTIC2_LIMIT + if (result > HEURISTIC2_LIMIT + && (ptr_t)(&dummy) < HEURISTIC2_LIMIT) { + result = HEURISTIC2_LIMIT; + } +# endif +# else + result = GC_find_limit((ptr_t)(&dummy), FALSE); +# ifdef HEURISTIC2_LIMIT + if (result < HEURISTIC2_LIMIT + && (ptr_t)(&dummy) > HEURISTIC2_LIMIT) { + result = HEURISTIC2_LIMIT; + } +# endif +# endif + +# endif /* HEURISTIC2 */ +# ifdef STACK_GROWS_DOWN + if (result == 0) result = (ptr_t)(signed_word)(-sizeof(ptr_t)); +# endif + return(result); +# endif /* STACKBOTTOM */ +} + +# endif /* ! AMIGA */ +# endif /* ! OS2 */ +# endif /* ! MSWIN32 */ + +/* + * Register static data segment(s) as roots. + * If more data segments are added later then they need to be registered + * add that point (as we do with SunOS dynamic loading), + * or GC_mark_roots needs to check for them (as we do with PCR). + * Called with allocator lock held. + */ + +# ifdef OS2 + +void GC_register_data_segments() +{ + PTIB ptib; + PPIB ppib; + HMODULE module_handle; +# define PBUFSIZ 512 + UCHAR path[PBUFSIZ]; + FILE * myexefile; + struct exe_hdr hdrdos; /* MSDOS header. */ + struct e32_exe hdr386; /* Real header for my executable */ + struct o32_obj seg; /* Currrent segment */ + int nsegs; + + + if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) { + GC_err_printf0("DosGetInfoBlocks failed\n"); + ABORT("DosGetInfoBlocks failed\n"); + } + module_handle = ppib -> pib_hmte; + if (DosQueryModuleName(module_handle, PBUFSIZ, path) != NO_ERROR) { + GC_err_printf0("DosQueryModuleName failed\n"); + ABORT("DosGetInfoBlocks failed\n"); + } + myexefile = fopen(path, "rb"); + if (myexefile == 0) { + GC_err_puts("Couldn't open executable "); + GC_err_puts(path); GC_err_puts("\n"); + ABORT("Failed to open executable\n"); + } + if (fread((char *)(&hdrdos), 1, sizeof hdrdos, myexefile) < sizeof hdrdos) { + GC_err_puts("Couldn't read MSDOS header from "); + GC_err_puts(path); GC_err_puts("\n"); + ABORT("Couldn't read MSDOS header"); + } + if (E_MAGIC(hdrdos) != EMAGIC) { + GC_err_puts("Executable has wrong DOS magic number: "); + GC_err_puts(path); GC_err_puts("\n"); + ABORT("Bad DOS magic number"); + } + if (fseek(myexefile, E_LFANEW(hdrdos), SEEK_SET) != 0) { + GC_err_puts("Seek to new header failed in "); + GC_err_puts(path); GC_err_puts("\n"); + ABORT("Bad DOS magic number"); + } + if (fread((char *)(&hdr386), 1, sizeof hdr386, myexefile) < sizeof hdr386) { + GC_err_puts("Couldn't read MSDOS header from "); + GC_err_puts(path); GC_err_puts("\n"); + ABORT("Couldn't read OS/2 header"); + } + if (E32_MAGIC1(hdr386) != E32MAGIC1 || E32_MAGIC2(hdr386) != E32MAGIC2) { + GC_err_puts("Executable has wrong OS/2 magic number:"); + GC_err_puts(path); GC_err_puts("\n"); + ABORT("Bad OS/2 magic number"); + } + if ( E32_BORDER(hdr386) != E32LEBO || E32_WORDER(hdr386) != E32LEWO) { + GC_err_puts("Executable %s has wrong byte order: "); + GC_err_puts(path); GC_err_puts("\n"); + ABORT("Bad byte order"); + } + if ( E32_CPU(hdr386) == E32CPU286) { + GC_err_puts("GC can't handle 80286 executables: "); + GC_err_puts(path); GC_err_puts("\n"); + EXIT(); + } + if (fseek(myexefile, E_LFANEW(hdrdos) + E32_OBJTAB(hdr386), + SEEK_SET) != 0) { + GC_err_puts("Seek to object table failed: "); + GC_err_puts(path); GC_err_puts("\n"); + ABORT("Seek to object table failed"); + } + for (nsegs = E32_OBJCNT(hdr386); nsegs > 0; nsegs--) { + int flags; + if (fread((char *)(&seg), 1, sizeof seg, myexefile) < sizeof seg) { + GC_err_puts("Couldn't read obj table entry from "); + GC_err_puts(path); GC_err_puts("\n"); + ABORT("Couldn't read obj table entry"); + } + flags = O32_FLAGS(seg); + if (!(flags & OBJWRITE)) continue; + if (!(flags & OBJREAD)) continue; + if (flags & OBJINVALID) { + GC_err_printf0("Object with invalid pages?\n"); + continue; + } + GC_add_roots_inner(O32_BASE(seg), O32_BASE(seg)+O32_SIZE(seg), FALSE); + } +} + +# else + +# ifdef MSWIN32 + /* Unfortunately, we have to handle win32s very differently from NT, */ + /* Since VirtualQuery has very different semantics. In particular, */ + /* under win32s a VirtualQuery call on an unmapped page returns an */ + /* invalid result. Under GC_register_data_segments is a noop and */ + /* all real work is done by GC_register_dynamic_libraries. Under */ + /* win32s, we cannot find the data segments associated with dll's. */ + /* We rgister the main data segment here. */ + GC_bool GC_win32s = FALSE; /* We're running under win32s. */ + + GC_bool GC_is_win32s() + { + DWORD v = GetVersion(); + + /* Check that this is not NT, and Windows major version <= 3 */ + return ((v & 0x80000000) && (v & 0xff) <= 3); + } + + void GC_init_win32() + { + GC_win32s = GC_is_win32s(); + } + + /* Return the smallest address a such that VirtualQuery */ + /* returns correct results for all addresses between a and start. */ + /* Assumes VirtualQuery returns correct information for start. */ + ptr_t GC_least_described_address(ptr_t start) + { + MEMORY_BASIC_INFORMATION buf; + SYSTEM_INFO sysinfo; + DWORD result; + LPVOID limit; + ptr_t p; + LPVOID q; + + GetSystemInfo(&sysinfo); + limit = sysinfo.lpMinimumApplicationAddress; + p = (ptr_t)((word)start & ~(GC_page_size - 1)); + for (;;) { + q = (LPVOID)(p - GC_page_size); + if ((ptr_t)q > (ptr_t)p /* underflow */ || q < limit) break; + result = VirtualQuery(q, &buf, sizeof(buf)); + if (result != sizeof(buf) || buf.AllocationBase == 0) break; + p = (ptr_t)(buf.AllocationBase); + } + return(p); + } + + /* Is p the start of either the malloc heap, or of one of our */ + /* heap sections? */ + GC_bool GC_is_heap_base (ptr_t p) + { + + register unsigned i; + +# ifndef REDIRECT_MALLOC + static ptr_t malloc_heap_pointer = 0; + + if (0 == malloc_heap_pointer) { + MEMORY_BASIC_INFORMATION buf; + register DWORD result = VirtualQuery(malloc(1), &buf, sizeof(buf)); + + if (result != sizeof(buf)) { + ABORT("Weird VirtualQuery result"); + } + malloc_heap_pointer = (ptr_t)(buf.AllocationBase); + } + if (p == malloc_heap_pointer) return(TRUE); +# endif + for (i = 0; i < GC_n_heap_bases; i++) { + if (GC_heap_bases[i] == p) return(TRUE); + } + return(FALSE); + } + + void GC_register_root_section(ptr_t static_root) + { + MEMORY_BASIC_INFORMATION buf; + SYSTEM_INFO sysinfo; + DWORD result; + DWORD protect; + LPVOID p; + char * base; + char * limit, * new_limit; + + if (!GC_win32s) return; + p = base = limit = GC_least_described_address(static_root); + GetSystemInfo(&sysinfo); + while (p < sysinfo.lpMaximumApplicationAddress) { + result = VirtualQuery(p, &buf, sizeof(buf)); + if (result != sizeof(buf) || buf.AllocationBase == 0 + || GC_is_heap_base(buf.AllocationBase)) break; + new_limit = (char *)p + buf.RegionSize; + protect = buf.Protect; + if (buf.State == MEM_COMMIT + && is_writable(protect)) { + if ((char *)p == limit) { + limit = new_limit; + } else { + if (base != limit) GC_add_roots_inner(base, limit, FALSE); + base = p; + limit = new_limit; + } + } + if (p > (LPVOID)new_limit /* overflow */) break; + p = (LPVOID)new_limit; + } + if (base != limit) GC_add_roots_inner(base, limit, FALSE); + } + + void GC_register_data_segments() + { + static char dummy; + + GC_register_root_section((ptr_t)(&dummy)); + } +# else +# ifdef AMIGA + + void GC_register_data_segments() + { + struct Process *proc; + struct CommandLineInterface *cli; + BPTR myseglist; + ULONG *data; + + int num; + + +# ifdef __GNUC__ + ULONG dataSegSize; + GC_bool found_segment = FALSE; + extern char __data_size[]; + + dataSegSize=__data_size+8; + /* Can`t find the Location of __data_size, because + it`s possible that is it, inside the segment. */ + +# endif + + proc= (struct Process*)SysBase->ThisTask; + + /* Reference: Amiga Guru Book Pages: 538ff,565,573 + and XOper.asm */ + if (proc->pr_Task.tc_Node.ln_Type==NT_PROCESS) { + if (proc->pr_CLI == NULL) { + myseglist = proc->pr_SegList; + } else { + /* ProcLoaded 'Loaded as a command: '*/ + cli = BADDR(proc->pr_CLI); + myseglist = cli->cli_Module; + } + } else { + ABORT("Not a Process."); + } + + if (myseglist == NULL) { + ABORT("Arrrgh.. can't find segments, aborting"); + } + + /* xoper hunks Shell Process */ + + num=0; + for (data = (ULONG *)BADDR(myseglist); data != NULL; + data = (ULONG *)BADDR(data[0])) { + if (((ULONG) GC_register_data_segments < (ULONG) &data[1]) || + ((ULONG) GC_register_data_segments > (ULONG) &data[1] + data[-1])) { +# ifdef __GNUC__ + if (dataSegSize == data[-1]) { + found_segment = TRUE; + } +# endif + GC_add_roots_inner((char *)&data[1], + ((char *)&data[1]) + data[-1], FALSE); + } + ++num; + } /* for */ +# ifdef __GNUC__ + if (!found_segment) { + ABORT("Can`t find correct Segments.\nSolution: Use an newer version of ixemul.library"); + } +# endif + } + +#if 0 /* old version */ + void GC_register_data_segments() + { + extern struct WBStartup *_WBenchMsg; + struct Process *proc; + struct CommandLineInterface *cli; + BPTR myseglist; + ULONG *data; + + if ( _WBenchMsg != 0 ) { + if ((myseglist = _WBenchMsg->sm_Segment) == 0) { + GC_err_puts("No seglist from workbench\n"); + return; + } + } else { + if ((proc = (struct Process *)FindTask(0)) == 0) { + GC_err_puts("Cannot find process structure\n"); + return; + } + if ((cli = BADDR(proc->pr_CLI)) == 0) { + GC_err_puts("No CLI\n"); + return; + } + if ((myseglist = cli->cli_Module) == 0) { + GC_err_puts("No seglist from CLI\n"); + return; + } + } + + for (data = (ULONG *)BADDR(myseglist); data != 0; + data = (ULONG *)BADDR(data[0])) { +# ifdef AMIGA_SKIP_SEG + if (((ULONG) GC_register_data_segments < (ULONG) &data[1]) || + ((ULONG) GC_register_data_segments > (ULONG) &data[1] + data[-1])) { +# else + { +# endif /* AMIGA_SKIP_SEG */ + GC_add_roots_inner((char *)&data[1], + ((char *)&data[1]) + data[-1], FALSE); + } + } + } +#endif /* old version */ + + +# else + +# if (defined(SVR4) || defined(AUX) || defined(DGUX)) && !defined(PCR) +char * GC_SysVGetDataStart(max_page_size, etext_addr) +int max_page_size; +int * etext_addr; +{ + word text_end = ((word)(etext_addr) + sizeof(word) - 1) + & ~(sizeof(word) - 1); + /* etext rounded to word boundary */ + word next_page = ((text_end + (word)max_page_size - 1) + & ~((word)max_page_size - 1)); + word page_offset = (text_end & ((word)max_page_size - 1)); + VOLATILE char * result = (char *)(next_page + page_offset); + /* Note that this isnt equivalent to just adding */ + /* max_page_size to &etext if &etext is at a page boundary */ + + GC_setup_temporary_fault_handler(); + if (setjmp(GC_jmp_buf) == 0) { + /* Try writing to the address. */ + *result = *result; + GC_reset_fault_handler(); + } else { + GC_reset_fault_handler(); + /* We got here via a longjmp. The address is not readable. */ + /* This is known to happen under Solaris 2.4 + gcc, which place */ + /* string constants in the text segment, but after etext. */ + /* Use plan B. Note that we now know there is a gap between */ + /* text and data segments, so plan A bought us something. */ + result = (char *)GC_find_limit((ptr_t)(DATAEND) - MIN_PAGE_SIZE, FALSE); + } + return((char *)result); +} +# endif + + +void GC_register_data_segments() +{ +# if !defined(PCR) && !defined(SRC_M3) && !defined(NEXT) && !defined(MACOS) \ + && !defined(MACOSX) +# if defined(REDIRECT_MALLOC) && defined(SOLARIS_THREADS) + /* As of Solaris 2.3, the Solaris threads implementation */ + /* allocates the data structure for the initial thread with */ + /* sbrk at process startup. It needs to be scanned, so that */ + /* we don't lose some malloc allocated data structures */ + /* hanging from it. We're on thin ice here ... */ + extern caddr_t sbrk(); + + GC_add_roots_inner(DATASTART, (char *)sbrk(0), FALSE); +# else + GC_add_roots_inner(DATASTART, (char *)(DATAEND), FALSE); +# endif +# endif +# if !defined(PCR) && (defined(NEXT) || defined(MACOSX)) + GC_add_roots_inner(DATASTART, (char *) get_end(), FALSE); +# endif +# if defined(MACOS) + { +# if defined(THINK_C) + extern void* GC_MacGetDataStart(void); + /* globals begin above stack and end at a5. */ + GC_add_roots_inner((ptr_t)GC_MacGetDataStart(), + (ptr_t)LMGetCurrentA5(), FALSE); +# else +# if defined(__MWERKS__) +# if !__POWERPC__ + extern void* GC_MacGetDataStart(void); + /* MATTHEW: Function to handle Far Globals (CW Pro 3) */ +# if __option(far_data) + extern void* GC_MacGetDataEnd(void); +# endif + /* globals begin above stack and end at a5. */ + GC_add_roots_inner((ptr_t)GC_MacGetDataStart(), + (ptr_t)LMGetCurrentA5(), FALSE); + /* MATTHEW: Handle Far Globals */ +# if __option(far_data) + /* Far globals follow he QD globals: */ + GC_add_roots_inner((ptr_t)LMGetCurrentA5(), + (ptr_t)GC_MacGetDataEnd(), FALSE); +# endif +# else + extern char __data_start__[], __data_end__[]; + GC_add_roots_inner((ptr_t)&__data_start__, + (ptr_t)&__data_end__, FALSE); +# endif /* __POWERPC__ */ +# endif /* __MWERKS__ */ +# endif /* !THINK_C */ + } +# endif /* MACOS */ + + /* Dynamic libraries are added at every collection, since they may */ + /* change. */ +} + +# endif /* ! AMIGA */ +# endif /* ! MSWIN32 */ +# endif /* ! OS2 */ + +/* + * Auxiliary routines for obtaining memory from OS. + */ + +# if !defined(OS2) && !defined(PCR) && !defined(AMIGA) \ + && !defined(MSWIN32) && !defined(MACOS) && !defined(DOS4GW) + +# ifdef SUNOS4 + extern caddr_t sbrk(); +# endif +# ifdef __STDC__ +# define SBRK_ARG_T ptrdiff_t +# else +# define SBRK_ARG_T int +# endif + +# ifdef RS6000 +/* The compiler seems to generate speculative reads one past the end of */ +/* an allocated object. Hence we need to make sure that the page */ +/* following the last heap page is also mapped. */ +ptr_t GC_unix_get_mem(bytes) +word bytes; +{ + caddr_t cur_brk = (caddr_t)sbrk(0); + caddr_t result; + SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1); + static caddr_t my_brk_val = 0; + + if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */ + if (lsbs != 0) { + if((caddr_t)(sbrk(GC_page_size - lsbs)) == (caddr_t)(-1)) return(0); + } + if (cur_brk == my_brk_val) { + /* Use the extra block we allocated last time. */ + result = (ptr_t)sbrk((SBRK_ARG_T)bytes); + if (result == (caddr_t)(-1)) return(0); + result -= GC_page_size; + } else { + result = (ptr_t)sbrk(GC_page_size + (SBRK_ARG_T)bytes); + if (result == (caddr_t)(-1)) return(0); + } + my_brk_val = result + bytes + GC_page_size; /* Always page aligned */ + return((ptr_t)result); +} + +#else /* Not RS6000 */ + +#if defined(USE_MMAP) +/* Tested only under IRIX5 and Solaris 2 */ + +#ifdef USE_MMAP_FIXED +# define GC_MMAP_FLAGS MAP_FIXED | MAP_PRIVATE + /* Seems to yield better performance on Solaris 2, but can */ + /* be unreliable if something is already mapped at the address. */ +#else +# define GC_MMAP_FLAGS MAP_PRIVATE +#endif + +ptr_t GC_unix_get_mem(bytes) +word bytes; +{ + static GC_bool initialized = FALSE; + static int fd; + void *result; + static ptr_t last_addr = HEAP_START; + + if (!initialized) { + fd = open("/dev/zero", O_RDONLY); + initialized = TRUE; + } + if (bytes & (GC_page_size -1)) ABORT("Bad GET_MEM arg"); + result = mmap(last_addr, bytes, PROT_READ | PROT_WRITE | OPT_PROT_EXEC, + GC_MMAP_FLAGS, fd, 0/* offset */); + if (result == MAP_FAILED) return(0); + last_addr = (ptr_t)result + bytes + GC_page_size - 1; + last_addr = (ptr_t)((word)last_addr & ~(GC_page_size - 1)); + return((ptr_t)result); +} + +#else /* Not RS6000, not USE_MMAP */ +ptr_t GC_unix_get_mem(bytes) +word bytes; +{ + ptr_t result; +# ifdef IRIX5 + /* Bare sbrk isn't thread safe. Play by malloc rules. */ + /* The equivalent may be needed on other systems as well. */ + __LOCK_MALLOC(); +# endif + { + ptr_t cur_brk = (ptr_t)sbrk(0); + SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1); + + if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */ + if (lsbs != 0) { + if((ptr_t)sbrk(GC_page_size - lsbs) == (ptr_t)(-1)) return(0); + } + result = (ptr_t)sbrk((SBRK_ARG_T)bytes); + if (result == (ptr_t)(-1)) result = 0; + } +# ifdef IRIX5 + __UNLOCK_MALLOC(); +# endif + return(result); +} + +#endif /* Not USE_MMAP */ +#endif /* Not RS6000 */ + +# endif /* UN*X */ + +# ifdef OS2 + +void * os2_alloc(size_t bytes) +{ + void * result; + + if (DosAllocMem(&result, bytes, PAG_EXECUTE | PAG_READ | + PAG_WRITE | PAG_COMMIT) + != NO_ERROR) { + return(0); + } + if (result == 0) return(os2_alloc(bytes)); + return(result); +} + +# endif /* OS2 */ + + +# ifdef MSWIN32 +word GC_n_heap_bases = 0; + +ptr_t GC_win32_get_mem(bytes) +word bytes; +{ + ptr_t result; + + if (GC_win32s) { + /* VirtualAlloc doesn't like PAGE_EXECUTE_READWRITE. */ + /* There are also unconfirmed rumors of other */ + /* problems, so we dodge the issue. */ + result = (ptr_t) GlobalAlloc(0, bytes + HBLKSIZE); + result = (ptr_t)(((word)result + HBLKSIZE) & ~(HBLKSIZE-1)); + } else { + result = (ptr_t) VirtualAlloc(NULL, bytes, + MEM_COMMIT | MEM_RESERVE, + PAGE_EXECUTE_READWRITE); + } + if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result"); + /* If I read the documentation correctly, this can */ + /* only happen if HBLKSIZE > 64k or not a power of 2. */ + if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections"); + GC_heap_bases[GC_n_heap_bases++] = result; + return(result); +} + +void GC_win32_free_heap () +{ + if (GC_win32s) { + while (GC_n_heap_bases > 0) { + GlobalFree (GC_heap_bases[--GC_n_heap_bases]); + GC_heap_bases[GC_n_heap_bases] = 0; + } + } +} + + +# endif + +#ifdef USE_MUNMAP + +/* For now, this only works on some Unix-like systems. If you */ +/* have something else, don't define USE_MUNMAP. */ +/* We assume ANSI C to support this feature. */ +#include <unistd.h> +#include <sys/mman.h> +#include <sys/stat.h> +#include <sys/types.h> +#include <fcntl.h> + +/* Compute a page aligned starting address for the unmap */ +/* operation on a block of size bytes starting at start. */ +/* Return 0 if the block is too small to make this feasible. */ +ptr_t GC_unmap_start(ptr_t start, word bytes) +{ + ptr_t result = start; + /* Round start to next page boundary. */ + result += GC_page_size - 1; + result = (ptr_t)((word)result & ~(GC_page_size - 1)); + if (result + GC_page_size > start + bytes) return 0; + return result; +} + +/* Compute end address for an unmap operation on the indicated */ +/* block. */ +ptr_t GC_unmap_end(ptr_t start, word bytes) +{ + ptr_t end_addr = start + bytes; + end_addr = (ptr_t)((word)end_addr & ~(GC_page_size - 1)); + return end_addr; +} + +/* We assume that GC_remap is called on exactly the same range */ +/* as a previous call to GC_unmap. It is safe to consistently */ +/* round the endpoints in both places. */ +void GC_unmap(ptr_t start, word bytes) +{ + ptr_t start_addr = GC_unmap_start(start, bytes); + ptr_t end_addr = GC_unmap_end(start, bytes); + word len = end_addr - start_addr; + if (0 == start_addr) return; + if (munmap(start_addr, len) != 0) ABORT("munmap failed"); + GC_unmapped_bytes += len; +} + + +void GC_remap(ptr_t start, word bytes) +{ + static int zero_descr = -1; + ptr_t start_addr = GC_unmap_start(start, bytes); + ptr_t end_addr = GC_unmap_end(start, bytes); + word len = end_addr - start_addr; + ptr_t result; + + if (-1 == zero_descr) zero_descr = open("/dev/zero", O_RDWR); + if (0 == start_addr) return; + result = mmap(start_addr, len, PROT_READ | PROT_WRITE | OPT_PROT_EXEC, + MAP_FIXED | MAP_PRIVATE, zero_descr, 0); + if (result != start_addr) { + ABORT("mmap remapping failed"); + } + GC_unmapped_bytes -= len; +} + +/* Two adjacent blocks have already been unmapped and are about to */ +/* be merged. Unmap the whole block. This typically requires */ +/* that we unmap a small section in the middle that was not previously */ +/* unmapped due to alignment constraints. */ +void GC_unmap_gap(ptr_t start1, word bytes1, ptr_t start2, word bytes2) +{ + ptr_t start1_addr = GC_unmap_start(start1, bytes1); + ptr_t end1_addr = GC_unmap_end(start1, bytes1); + ptr_t start2_addr = GC_unmap_start(start2, bytes2); + ptr_t end2_addr = GC_unmap_end(start2, bytes2); + ptr_t start_addr = end1_addr; + ptr_t end_addr = start2_addr; + word len; + GC_ASSERT(start1 + bytes1 == start2); + if (0 == start1_addr) start_addr = GC_unmap_start(start1, bytes1 + bytes2); + if (0 == start2_addr) end_addr = GC_unmap_end(start1, bytes1 + bytes2); + if (0 == start_addr) return; + len = end_addr - start_addr; + if (len != 0 && munmap(start_addr, len) != 0) ABORT("munmap failed"); + GC_unmapped_bytes += len; +} + +#endif /* USE_MUNMAP */ + +/* Routine for pushing any additional roots. In THREADS */ +/* environment, this is also responsible for marking from */ +/* thread stacks. In the SRC_M3 case, it also handles */ +/* global variables. */ +#ifndef THREADS +void (*GC_push_other_roots)() = 0; +#else /* THREADS */ + +# ifdef PCR +PCR_ERes GC_push_thread_stack(PCR_Th_T *t, PCR_Any dummy) +{ + struct PCR_ThCtl_TInfoRep info; + PCR_ERes result; + + info.ti_stkLow = info.ti_stkHi = 0; + result = PCR_ThCtl_GetInfo(t, &info); + GC_push_all_stack((ptr_t)(info.ti_stkLow), (ptr_t)(info.ti_stkHi)); + return(result); +} + +/* Push the contents of an old object. We treat this as stack */ +/* data only becasue that makes it robust against mark stack */ +/* overflow. */ +PCR_ERes GC_push_old_obj(void *p, size_t size, PCR_Any data) +{ + GC_push_all_stack((ptr_t)p, (ptr_t)p + size); + return(PCR_ERes_okay); +} + + +void GC_default_push_other_roots() +{ + /* Traverse data allocated by previous memory managers. */ + { + extern struct PCR_MM_ProcsRep * GC_old_allocator; + + if ((*(GC_old_allocator->mmp_enumerate))(PCR_Bool_false, + GC_push_old_obj, 0) + != PCR_ERes_okay) { + ABORT("Old object enumeration failed"); + } + } + /* Traverse all thread stacks. */ + if (PCR_ERes_IsErr( + PCR_ThCtl_ApplyToAllOtherThreads(GC_push_thread_stack,0)) + || PCR_ERes_IsErr(GC_push_thread_stack(PCR_Th_CurrThread(), 0))) { + ABORT("Thread stack marking failed\n"); + } +} + +# endif /* PCR */ + +# ifdef SRC_M3 + +# ifdef ALL_INTERIOR_POINTERS + --> misconfigured +# endif + + +extern void ThreadF__ProcessStacks(); + +void GC_push_thread_stack(start, stop) +word start, stop; +{ + GC_push_all_stack((ptr_t)start, (ptr_t)stop + sizeof(word)); +} + +/* Push routine with M3 specific calling convention. */ +GC_m3_push_root(dummy1, p, dummy2, dummy3) +word *p; +ptr_t dummy1, dummy2; +int dummy3; +{ + word q = *p; + + if ((ptr_t)(q) >= GC_least_plausible_heap_addr + && (ptr_t)(q) < GC_greatest_plausible_heap_addr) { + GC_push_one_checked(q,FALSE); + } +} + +/* M3 set equivalent to RTHeap.TracedRefTypes */ +typedef struct { int elts[1]; } RefTypeSet; +RefTypeSet GC_TracedRefTypes = {{0x1}}; + +/* From finalize.c */ +extern void GC_push_finalizer_structures(); + +/* From stubborn.c: */ +# ifdef STUBBORN_ALLOC + extern GC_PTR * GC_changing_list_start; +# endif + + +void GC_default_push_other_roots() +{ + /* Use the M3 provided routine for finding static roots. */ + /* This is a bit dubious, since it presumes no C roots. */ + /* We handle the collector roots explicitly. */ + { +# ifdef STUBBORN_ALLOC + GC_push_one(GC_changing_list_start); +# endif + GC_push_finalizer_structures(); + RTMain__GlobalMapProc(GC_m3_push_root, 0, GC_TracedRefTypes); + } + if (GC_words_allocd > 0) { + ThreadF__ProcessStacks(GC_push_thread_stack); + } + /* Otherwise this isn't absolutely necessary, and we have */ + /* startup ordering problems. */ +} + +# endif /* SRC_M3 */ + +# if defined(SOLARIS_THREADS) || defined(WIN32_THREADS) \ + || defined(IRIX_THREADS) || defined(LINUX_THREADS) \ + || defined(IRIX_PCR_THREADS) + +extern void GC_push_all_stacks(); + +void GC_default_push_other_roots() +{ + GC_push_all_stacks(); +} + +# endif /* SOLARIS_THREADS || ... */ + +void (*GC_push_other_roots)() = GC_default_push_other_roots; + +#endif + +/* + * Routines for accessing dirty bits on virtual pages. + * We plan to eventaually implement four strategies for doing so: + * DEFAULT_VDB: A simple dummy implementation that treats every page + * as possibly dirty. This makes incremental collection + * useless, but the implementation is still correct. + * PCR_VDB: Use PPCRs virtual dirty bit facility. + * PROC_VDB: Use the /proc facility for reading dirty bits. Only + * works under some SVR4 variants. Even then, it may be + * too slow to be entirely satisfactory. Requires reading + * dirty bits for entire address space. Implementations tend + * to assume that the client is a (slow) debugger. + * MPROTECT_VDB:Protect pages and then catch the faults to keep track of + * dirtied pages. The implementation (and implementability) + * is highly system dependent. This usually fails when system + * calls write to a protected page. We prevent the read system + * call from doing so. It is the clients responsibility to + * make sure that other system calls are similarly protected + * or write only to the stack. + */ + +GC_bool GC_dirty_maintained = FALSE; + +# ifdef DEFAULT_VDB + +/* All of the following assume the allocation lock is held, and */ +/* signals are disabled. */ + +/* The client asserts that unallocated pages in the heap are never */ +/* written. */ + +/* Initialize virtual dirty bit implementation. */ +void GC_dirty_init() +{ + GC_dirty_maintained = TRUE; +} + +/* Retrieve system dirty bits for heap to a local buffer. */ +/* Restore the systems notion of which pages are dirty. */ +void GC_read_dirty() +{} + +/* Is the HBLKSIZE sized page at h marked dirty in the local buffer? */ +/* If the actual page size is different, this returns TRUE if any */ +/* of the pages overlapping h are dirty. This routine may err on the */ +/* side of labelling pages as dirty (and this implementation does). */ +/*ARGSUSED*/ +GC_bool GC_page_was_dirty(h) +struct hblk *h; +{ + return(TRUE); +} + +/* + * The following two routines are typically less crucial. They matter + * most with large dynamic libraries, or if we can't accurately identify + * stacks, e.g. under Solaris 2.X. Otherwise the following default + * versions are adequate. + */ + +/* Could any valid GC heap pointer ever have been written to this page? */ +/*ARGSUSED*/ +GC_bool GC_page_was_ever_dirty(h) +struct hblk *h; +{ + return(TRUE); +} + +/* Reset the n pages starting at h to "was never dirty" status. */ +void GC_is_fresh(h, n) +struct hblk *h; +word n; +{ +} + +/* A call hints that h is about to be written. */ +/* May speed up some dirty bit implementations. */ +/*ARGSUSED*/ +void GC_write_hint(h) +struct hblk *h; +{ +} + +# endif /* DEFAULT_VDB */ + + +# ifdef MPROTECT_VDB + +/* + * See DEFAULT_VDB for interface descriptions. + */ + +/* + * This implementation maintains dirty bits itself by catching write + * faults and keeping track of them. We assume nobody else catches + * SIGBUS or SIGSEGV. We assume no write faults occur in system calls + * except as a result of a read system call. This means clients must + * either ensure that system calls do not touch the heap, or must + * provide their own wrappers analogous to the one for read. + * We assume the page size is a multiple of HBLKSIZE. + * This implementation is currently SunOS 4.X and IRIX 5.X specific, though we + * tried to use portable code where easily possible. It is known + * not to work under a number of other systems. + */ + +# ifndef MSWIN32 + +# include <sys/mman.h> +# include <signal.h> +# include <sys/syscall.h> + +# define PROTECT(addr, len) \ + if (mprotect((caddr_t)(addr), (int)(len), \ + PROT_READ | OPT_PROT_EXEC) < 0) { \ + ABORT("mprotect failed"); \ + } +# define UNPROTECT(addr, len) \ + if (mprotect((caddr_t)(addr), (int)(len), \ + PROT_WRITE | PROT_READ | OPT_PROT_EXEC ) < 0) { \ + ABORT("un-mprotect failed"); \ + } + +# else + +# include <signal.h> + + static DWORD protect_junk; +# define PROTECT(addr, len) \ + if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READ, \ + &protect_junk)) { \ + DWORD last_error = GetLastError(); \ + GC_printf1("Last error code: %lx\n", last_error); \ + ABORT("VirtualProtect failed"); \ + } +# define UNPROTECT(addr, len) \ + if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READWRITE, \ + &protect_junk)) { \ + ABORT("un-VirtualProtect failed"); \ + } + +# endif + +#if defined(SUNOS4) || defined(FREEBSD) + typedef void (* SIG_PF)(); +#endif +#if defined(SUNOS5SIGS) || defined(OSF1) || defined(LINUX) + typedef void (* SIG_PF)(int); +#endif +#if defined(MSWIN32) + typedef LPTOP_LEVEL_EXCEPTION_FILTER SIG_PF; +# undef SIG_DFL +# define SIG_DFL (LPTOP_LEVEL_EXCEPTION_FILTER) (-1) +#endif + +#if defined(IRIX5) || defined(OSF1) + typedef void (* REAL_SIG_PF)(int, int, struct sigcontext *); +#endif +#if defined(SUNOS5SIGS) + typedef void (* REAL_SIG_PF)(int, struct siginfo *, void *); +#endif +#if defined(LINUX) +# include <linux/version.h> +# if (LINUX_VERSION_CODE >= 0x20100) && !defined(M68K) || defined(ALPHA) + typedef struct sigcontext s_c; +# else + typedef struct sigcontext_struct s_c; +# endif +# ifdef ALPHA + typedef void (* REAL_SIG_PF)(int, int, s_c *); + /* Retrieve fault address from sigcontext structure by decoding */ + /* instruction. */ + char * get_fault_addr(s_c *sc) { + unsigned instr; + word faultaddr; + + instr = *((unsigned *)(sc->sc_pc)); + faultaddr = sc->sc_regs[(instr >> 16) & 0x1f]; + faultaddr += (word) (((int)instr << 16) >> 16); + return (char *)faultaddr; + } +# else /* !ALPHA */ + typedef void (* REAL_SIG_PF)(int, s_c); +# endif /* !ALPHA */ +# endif + +SIG_PF GC_old_bus_handler; +SIG_PF GC_old_segv_handler; /* Also old MSWIN32 ACCESS_VIOLATION filter */ + +/*ARGSUSED*/ +# if defined (SUNOS4) || defined(FREEBSD) + void GC_write_fault_handler(sig, code, scp, addr) + int sig, code; + struct sigcontext *scp; + char * addr; +# ifdef SUNOS4 +# define SIG_OK (sig == SIGSEGV || sig == SIGBUS) +# define CODE_OK (FC_CODE(code) == FC_PROT \ + || (FC_CODE(code) == FC_OBJERR \ + && FC_ERRNO(code) == FC_PROT)) +# endif +# ifdef FREEBSD +# define SIG_OK (sig == SIGBUS) +# define CODE_OK (code == BUS_PAGE_FAULT) +# endif +# endif +# if defined(IRIX5) || defined(OSF1) +# include <errno.h> + void GC_write_fault_handler(int sig, int code, struct sigcontext *scp) +# define SIG_OK (sig == SIGSEGV) +# ifdef OSF1 +# define CODE_OK (code == 2 /* experimentally determined */) +# endif +# ifdef IRIX5 +# define CODE_OK (code == EACCES) +# endif +# endif +# if defined(LINUX) +# ifdef ALPHA + void GC_write_fault_handler(int sig, int code, s_c * sc) +# else + void GC_write_fault_handler(int sig, s_c sc) +# endif +# define SIG_OK (sig == SIGSEGV) +# define CODE_OK TRUE + /* Empirically c.trapno == 14, but is that useful? */ + /* We assume Intel architecture, so alignment */ + /* faults are not possible. */ +# endif +# if defined(SUNOS5SIGS) + void GC_write_fault_handler(int sig, struct siginfo *scp, void * context) +# define SIG_OK (sig == SIGSEGV) +# define CODE_OK (scp -> si_code == SEGV_ACCERR) +# endif +# if defined(MSWIN32) + LONG WINAPI GC_write_fault_handler(struct _EXCEPTION_POINTERS *exc_info) +# define SIG_OK (exc_info -> ExceptionRecord -> ExceptionCode == \ + EXCEPTION_ACCESS_VIOLATION) +# define CODE_OK (exc_info -> ExceptionRecord -> ExceptionInformation[0] == 1) + /* Write fault */ +# endif +{ + register unsigned i; +# ifdef IRIX5 + char * addr = (char *) (size_t) (scp -> sc_badvaddr); +# endif +# if defined(OSF1) && defined(ALPHA) + char * addr = (char *) (scp -> sc_traparg_a0); +# endif +# ifdef SUNOS5SIGS + char * addr = (char *) (scp -> si_addr); +# endif +# ifdef LINUX +# ifdef I386 + char * addr = (char *) (sc.cr2); +# else +# if defined(M68K) + char * addr = NULL; + + struct sigcontext *scp = (struct sigcontext *)(&sc); + + int format = (scp->sc_formatvec >> 12) & 0xf; + unsigned long *framedata = (unsigned long *)(scp + 1); + unsigned long ea; + + if (format == 0xa || format == 0xb) { + /* 68020/030 */ + ea = framedata[2]; + } else if (format == 7) { + /* 68040 */ + ea = framedata[3]; + } else if (format == 4) { + /* 68060 */ + ea = framedata[0]; + if (framedata[1] & 0x08000000) { + /* correct addr on misaligned access */ + ea = (ea+4095)&(~4095); + } + } + addr = (char *)ea; +# else +# ifdef ALPHA + char * addr = get_fault_addr(sc); +# else + --> architecture not supported +# endif +# endif +# endif +# endif +# if defined(MSWIN32) + char * addr = (char *) (exc_info -> ExceptionRecord + -> ExceptionInformation[1]); +# define sig SIGSEGV +# endif + + if (SIG_OK && CODE_OK) { + register struct hblk * h = + (struct hblk *)((word)addr & ~(GC_page_size-1)); + GC_bool in_allocd_block; + +# ifdef SUNOS5SIGS + /* Address is only within the correct physical page. */ + in_allocd_block = FALSE; + for (i = 0; i < divHBLKSZ(GC_page_size); i++) { + if (HDR(h+i) != 0) { + in_allocd_block = TRUE; + } + } +# else + in_allocd_block = (HDR(addr) != 0); +# endif + if (!in_allocd_block) { + /* Heap blocks now begin and end on page boundaries */ + SIG_PF old_handler; + + if (sig == SIGSEGV) { + old_handler = GC_old_segv_handler; + } else { + old_handler = GC_old_bus_handler; + } + if (old_handler == SIG_DFL) { +# ifndef MSWIN32 + GC_err_printf1("Segfault at 0x%lx\n", addr); + ABORT("Unexpected bus error or segmentation fault"); +# else + return(EXCEPTION_CONTINUE_SEARCH); +# endif + } else { +# if defined (SUNOS4) || defined(FREEBSD) + (*old_handler) (sig, code, scp, addr); + return; +# endif +# if defined (SUNOS5SIGS) + (*(REAL_SIG_PF)old_handler) (sig, scp, context); + return; +# endif +# if defined (LINUX) +# ifdef ALPHA + (*(REAL_SIG_PF)old_handler) (sig, code, sc); +# else + (*(REAL_SIG_PF)old_handler) (sig, sc); +# endif + return; +# endif +# if defined (IRIX5) || defined(OSF1) + (*(REAL_SIG_PF)old_handler) (sig, code, scp); + return; +# endif +# ifdef MSWIN32 + return((*old_handler)(exc_info)); +# endif + } + } + for (i = 0; i < divHBLKSZ(GC_page_size); i++) { + register int index = PHT_HASH(h+i); + + set_pht_entry_from_index(GC_dirty_pages, index); + } + UNPROTECT(h, GC_page_size); +# if defined(OSF1) || defined(LINUX) + /* These reset the signal handler each time by default. */ + signal(SIGSEGV, (SIG_PF) GC_write_fault_handler); +# endif + /* The write may not take place before dirty bits are read. */ + /* But then we'll fault again ... */ +# ifdef MSWIN32 + return(EXCEPTION_CONTINUE_EXECUTION); +# else + return; +# endif + } +#ifdef MSWIN32 + return EXCEPTION_CONTINUE_SEARCH; +#else + GC_err_printf1("Segfault at 0x%lx\n", addr); + ABORT("Unexpected bus error or segmentation fault"); +#endif +} + +/* + * We hold the allocation lock. We expect block h to be written + * shortly. + */ +void GC_write_hint(h) +struct hblk *h; +{ + register struct hblk * h_trunc; + register unsigned i; + register GC_bool found_clean; + + if (!GC_dirty_maintained) return; + h_trunc = (struct hblk *)((word)h & ~(GC_page_size-1)); + found_clean = FALSE; + for (i = 0; i < divHBLKSZ(GC_page_size); i++) { + register int index = PHT_HASH(h_trunc+i); + + if (!get_pht_entry_from_index(GC_dirty_pages, index)) { + found_clean = TRUE; + set_pht_entry_from_index(GC_dirty_pages, index); + } + } + if (found_clean) { + UNPROTECT(h_trunc, GC_page_size); + } +} + +void GC_dirty_init() +{ +#if defined(SUNOS5SIGS) || defined(IRIX5) /* || defined(OSF1) */ + struct sigaction act, oldact; +# ifdef IRIX5 + act.sa_flags = SA_RESTART; + act.sa_handler = GC_write_fault_handler; +# else + act.sa_flags = SA_RESTART | SA_SIGINFO; + act.sa_sigaction = GC_write_fault_handler; +# endif + (void)sigemptyset(&act.sa_mask); +#endif +# ifdef PRINTSTATS + GC_printf0("Inititalizing mprotect virtual dirty bit implementation\n"); +# endif + GC_dirty_maintained = TRUE; + if (GC_page_size % HBLKSIZE != 0) { + GC_err_printf0("Page size not multiple of HBLKSIZE\n"); + ABORT("Page size not multiple of HBLKSIZE"); + } +# if defined(SUNOS4) || defined(FREEBSD) + GC_old_bus_handler = signal(SIGBUS, GC_write_fault_handler); + if (GC_old_bus_handler == SIG_IGN) { + GC_err_printf0("Previously ignored bus error!?"); + GC_old_bus_handler = SIG_DFL; + } + if (GC_old_bus_handler != SIG_DFL) { +# ifdef PRINTSTATS + GC_err_printf0("Replaced other SIGBUS handler\n"); +# endif + } +# endif +# if defined(OSF1) || defined(SUNOS4) || defined(LINUX) + GC_old_segv_handler = signal(SIGSEGV, (SIG_PF)GC_write_fault_handler); + if (GC_old_segv_handler == SIG_IGN) { + GC_err_printf0("Previously ignored segmentation violation!?"); + GC_old_segv_handler = SIG_DFL; + } + if (GC_old_segv_handler != SIG_DFL) { +# ifdef PRINTSTATS + GC_err_printf0("Replaced other SIGSEGV handler\n"); +# endif + } +# endif +# if defined(SUNOS5SIGS) || defined(IRIX5) +# if defined(IRIX_THREADS) || defined(IRIX_PCR_THREADS) + sigaction(SIGSEGV, 0, &oldact); + sigaction(SIGSEGV, &act, 0); +# else + sigaction(SIGSEGV, &act, &oldact); +# endif +# if defined(_sigargs) + /* This is Irix 5.x, not 6.x. Irix 5.x does not have */ + /* sa_sigaction. */ + GC_old_segv_handler = oldact.sa_handler; +# else /* Irix 6.x or SUNOS5SIGS */ + if (oldact.sa_flags & SA_SIGINFO) { + GC_old_segv_handler = (SIG_PF)(oldact.sa_sigaction); + } else { + GC_old_segv_handler = oldact.sa_handler; + } +# endif + if (GC_old_segv_handler == SIG_IGN) { + GC_err_printf0("Previously ignored segmentation violation!?"); + GC_old_segv_handler = SIG_DFL; + } + if (GC_old_segv_handler != SIG_DFL) { +# ifdef PRINTSTATS + GC_err_printf0("Replaced other SIGSEGV handler\n"); +# endif + } +# endif +# if defined(MSWIN32) + GC_old_segv_handler = SetUnhandledExceptionFilter(GC_write_fault_handler); + if (GC_old_segv_handler != NULL) { +# ifdef PRINTSTATS + GC_err_printf0("Replaced other UnhandledExceptionFilter\n"); +# endif + } else { + GC_old_segv_handler = SIG_DFL; + } +# endif +} + + + +void GC_protect_heap() +{ + ptr_t start; + word len; + unsigned i; + + for (i = 0; i < GC_n_heap_sects; i++) { + start = GC_heap_sects[i].hs_start; + len = GC_heap_sects[i].hs_bytes; + PROTECT(start, len); + } +} + +/* We assume that either the world is stopped or its OK to lose dirty */ +/* bits while this is happenning (as in GC_enable_incremental). */ +void GC_read_dirty() +{ + BCOPY((word *)GC_dirty_pages, GC_grungy_pages, + (sizeof GC_dirty_pages)); + BZERO((word *)GC_dirty_pages, (sizeof GC_dirty_pages)); + GC_protect_heap(); +} + +GC_bool GC_page_was_dirty(h) +struct hblk * h; +{ + register word index = PHT_HASH(h); + + return(HDR(h) == 0 || get_pht_entry_from_index(GC_grungy_pages, index)); +} + +/* + * Acquiring the allocation lock here is dangerous, since this + * can be called from within GC_call_with_alloc_lock, and the cord + * package does so. On systems that allow nested lock acquisition, this + * happens to work. + * On other systems, SET_LOCK_HOLDER and friends must be suitably defined. + */ + +void GC_begin_syscall() +{ + if (!I_HOLD_LOCK()) LOCK(); +} + +void GC_end_syscall() +{ + if (!I_HOLD_LOCK()) UNLOCK(); +} + +void GC_unprotect_range(addr, len) +ptr_t addr; +word len; +{ + struct hblk * start_block; + struct hblk * end_block; + register struct hblk *h; + ptr_t obj_start; + + if (!GC_incremental) return; + obj_start = GC_base(addr); + if (obj_start == 0) return; + if (GC_base(addr + len - 1) != obj_start) { + ABORT("GC_unprotect_range(range bigger than object)"); + } + start_block = (struct hblk *)((word)addr & ~(GC_page_size - 1)); + end_block = (struct hblk *)((word)(addr + len - 1) & ~(GC_page_size - 1)); + end_block += GC_page_size/HBLKSIZE - 1; + for (h = start_block; h <= end_block; h++) { + register word index = PHT_HASH(h); + + set_pht_entry_from_index(GC_dirty_pages, index); + } + UNPROTECT(start_block, + ((ptr_t)end_block - (ptr_t)start_block) + HBLKSIZE); +} + +#ifndef MSWIN32 +/* Replacement for UNIX system call. */ +/* Other calls that write to the heap */ +/* should be handled similarly. */ +# if defined(__STDC__) && !defined(SUNOS4) +# include <unistd.h> + ssize_t read(int fd, void *buf, size_t nbyte) +# else +# ifndef LINT + int read(fd, buf, nbyte) +# else + int GC_read(fd, buf, nbyte) +# endif + int fd; + char *buf; + int nbyte; +# endif +{ + int result; + + GC_begin_syscall(); + GC_unprotect_range(buf, (word)nbyte); +# ifdef IRIX5 + /* Indirect system call may not always be easily available. */ + /* We could call _read, but that would interfere with the */ + /* libpthread interception of read. */ + { + struct iovec iov; + + iov.iov_base = buf; + iov.iov_len = nbyte; + result = readv(fd, &iov, 1); + } +# else + result = syscall(SYS_read, fd, buf, nbyte); +# endif + GC_end_syscall(); + return(result); +} +#endif /* !MSWIN32 */ + +/*ARGSUSED*/ +GC_bool GC_page_was_ever_dirty(h) +struct hblk *h; +{ + return(TRUE); +} + +/* Reset the n pages starting at h to "was never dirty" status. */ +/*ARGSUSED*/ +void GC_is_fresh(h, n) +struct hblk *h; +word n; +{ +} + +# endif /* MPROTECT_VDB */ + +# ifdef PROC_VDB + +/* + * See DEFAULT_VDB for interface descriptions. + */ + +/* + * This implementaion assumes a Solaris 2.X like /proc pseudo-file-system + * from which we can read page modified bits. This facility is far from + * optimal (e.g. we would like to get the info for only some of the + * address space), but it avoids intercepting system calls. + */ + +#include <errno.h> +#include <sys/types.h> +#include <sys/signal.h> +#include <sys/fault.h> +#include <sys/syscall.h> +#include <sys/procfs.h> +#include <sys/stat.h> +#include <fcntl.h> + +#define INITIAL_BUF_SZ 4096 +word GC_proc_buf_size = INITIAL_BUF_SZ; +char *GC_proc_buf; + +#ifdef SOLARIS_THREADS +/* We don't have exact sp values for threads. So we count on */ +/* occasionally declaring stack pages to be fresh. Thus we */ +/* need a real implementation of GC_is_fresh. We can't clear */ +/* entries in GC_written_pages, since that would declare all */ +/* pages with the given hash address to be fresh. */ +# define MAX_FRESH_PAGES 8*1024 /* Must be power of 2 */ + struct hblk ** GC_fresh_pages; /* A direct mapped cache. */ + /* Collisions are dropped. */ + +# define FRESH_PAGE_SLOT(h) (divHBLKSZ((word)(h)) & (MAX_FRESH_PAGES-1)) +# define ADD_FRESH_PAGE(h) \ + GC_fresh_pages[FRESH_PAGE_SLOT(h)] = (h) +# define PAGE_IS_FRESH(h) \ + (GC_fresh_pages[FRESH_PAGE_SLOT(h)] == (h) && (h) != 0) +#endif + +/* Add all pages in pht2 to pht1 */ +void GC_or_pages(pht1, pht2) +page_hash_table pht1, pht2; +{ + register int i; + + for (i = 0; i < PHT_SIZE; i++) pht1[i] |= pht2[i]; +} + +int GC_proc_fd; + +void GC_dirty_init() +{ + int fd; + char buf[30]; + + GC_dirty_maintained = TRUE; + if (GC_words_allocd != 0 || GC_words_allocd_before_gc != 0) { + register int i; + + for (i = 0; i < PHT_SIZE; i++) GC_written_pages[i] = (word)(-1); +# ifdef PRINTSTATS + GC_printf1("Allocated words:%lu:all pages may have been written\n", + (unsigned long) + (GC_words_allocd + GC_words_allocd_before_gc)); +# endif + } + sprintf(buf, "/proc/%d", getpid()); + fd = open(buf, O_RDONLY); + if (fd < 0) { + ABORT("/proc open failed"); + } + GC_proc_fd = syscall(SYS_ioctl, fd, PIOCOPENPD, 0); + close(fd); + if (GC_proc_fd < 0) { + ABORT("/proc ioctl failed"); + } + GC_proc_buf = GC_scratch_alloc(GC_proc_buf_size); +# ifdef SOLARIS_THREADS + GC_fresh_pages = (struct hblk **) + GC_scratch_alloc(MAX_FRESH_PAGES * sizeof (struct hblk *)); + if (GC_fresh_pages == 0) { + GC_err_printf0("No space for fresh pages\n"); + EXIT(); + } + BZERO(GC_fresh_pages, MAX_FRESH_PAGES * sizeof (struct hblk *)); +# endif +} + +/* Ignore write hints. They don't help us here. */ +/*ARGSUSED*/ +void GC_write_hint(h) +struct hblk *h; +{ +} + +#ifdef SOLARIS_THREADS +# define READ(fd,buf,nbytes) syscall(SYS_read, fd, buf, nbytes) +#else +# define READ(fd,buf,nbytes) read(fd, buf, nbytes) +#endif + +void GC_read_dirty() +{ + unsigned long ps, np; + int nmaps; + ptr_t vaddr; + struct prasmap * map; + char * bufp; + ptr_t current_addr, limit; + int i; +int dummy; + + BZERO(GC_grungy_pages, (sizeof GC_grungy_pages)); + + bufp = GC_proc_buf; + if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) { +# ifdef PRINTSTATS + GC_printf1("/proc read failed: GC_proc_buf_size = %lu\n", + GC_proc_buf_size); +# endif + { + /* Retry with larger buffer. */ + word new_size = 2 * GC_proc_buf_size; + char * new_buf = GC_scratch_alloc(new_size); + + if (new_buf != 0) { + GC_proc_buf = bufp = new_buf; + GC_proc_buf_size = new_size; + } + if (syscall(SYS_read, GC_proc_fd, bufp, GC_proc_buf_size) <= 0) { + WARN("Insufficient space for /proc read\n", 0); + /* Punt: */ + memset(GC_grungy_pages, 0xff, sizeof (page_hash_table)); + memset(GC_written_pages, 0xff, sizeof(page_hash_table)); +# ifdef SOLARIS_THREADS + BZERO(GC_fresh_pages, + MAX_FRESH_PAGES * sizeof (struct hblk *)); +# endif + return; + } + } + } + /* Copy dirty bits into GC_grungy_pages */ + nmaps = ((struct prpageheader *)bufp) -> pr_nmap; + /* printf( "nmaps = %d, PG_REFERENCED = %d, PG_MODIFIED = %d\n", + nmaps, PG_REFERENCED, PG_MODIFIED); */ + bufp = bufp + sizeof(struct prpageheader); + for (i = 0; i < nmaps; i++) { + map = (struct prasmap *)bufp; + vaddr = (ptr_t)(map -> pr_vaddr); + ps = map -> pr_pagesize; + np = map -> pr_npage; + /* printf("vaddr = 0x%X, ps = 0x%X, np = 0x%X\n", vaddr, ps, np); */ + limit = vaddr + ps * np; + bufp += sizeof (struct prasmap); + for (current_addr = vaddr; + current_addr < limit; current_addr += ps){ + if ((*bufp++) & PG_MODIFIED) { + register struct hblk * h = (struct hblk *) current_addr; + + while ((ptr_t)h < current_addr + ps) { + register word index = PHT_HASH(h); + + set_pht_entry_from_index(GC_grungy_pages, index); +# ifdef SOLARIS_THREADS + { + register int slot = FRESH_PAGE_SLOT(h); + + if (GC_fresh_pages[slot] == h) { + GC_fresh_pages[slot] = 0; + } + } +# endif + h++; + } + } + } + bufp += sizeof(long) - 1; + bufp = (char *)((unsigned long)bufp & ~(sizeof(long)-1)); + } + /* Update GC_written_pages. */ + GC_or_pages(GC_written_pages, GC_grungy_pages); +# ifdef SOLARIS_THREADS + /* Make sure that old stacks are considered completely clean */ + /* unless written again. */ + GC_old_stacks_are_fresh(); +# endif +} + +#undef READ + +GC_bool GC_page_was_dirty(h) +struct hblk *h; +{ + register word index = PHT_HASH(h); + register GC_bool result; + + result = get_pht_entry_from_index(GC_grungy_pages, index); +# ifdef SOLARIS_THREADS + if (result && PAGE_IS_FRESH(h)) result = FALSE; + /* This happens only if page was declared fresh since */ + /* the read_dirty call, e.g. because it's in an unused */ + /* thread stack. It's OK to treat it as clean, in */ + /* that case. And it's consistent with */ + /* GC_page_was_ever_dirty. */ +# endif + return(result); +} + +GC_bool GC_page_was_ever_dirty(h) +struct hblk *h; +{ + register word index = PHT_HASH(h); + register GC_bool result; + + result = get_pht_entry_from_index(GC_written_pages, index); +# ifdef SOLARIS_THREADS + if (result && PAGE_IS_FRESH(h)) result = FALSE; +# endif + return(result); +} + +/* Caller holds allocation lock. */ +void GC_is_fresh(h, n) +struct hblk *h; +word n; +{ + + register word index; + +# ifdef SOLARIS_THREADS + register word i; + + if (GC_fresh_pages != 0) { + for (i = 0; i < n; i++) { + ADD_FRESH_PAGE(h + i); + } + } +# endif +} + +# endif /* PROC_VDB */ + + +# ifdef PCR_VDB + +# include "vd/PCR_VD.h" + +# define NPAGES (32*1024) /* 128 MB */ + +PCR_VD_DB GC_grungy_bits[NPAGES]; + +ptr_t GC_vd_base; /* Address corresponding to GC_grungy_bits[0] */ + /* HBLKSIZE aligned. */ + +void GC_dirty_init() +{ + GC_dirty_maintained = TRUE; + /* For the time being, we assume the heap generally grows up */ + GC_vd_base = GC_heap_sects[0].hs_start; + if (GC_vd_base == 0) { + ABORT("Bad initial heap segment"); + } + if (PCR_VD_Start(HBLKSIZE, GC_vd_base, NPAGES*HBLKSIZE) + != PCR_ERes_okay) { + ABORT("dirty bit initialization failed"); + } +} + +void GC_read_dirty() +{ + /* lazily enable dirty bits on newly added heap sects */ + { + static int onhs = 0; + int nhs = GC_n_heap_sects; + for( ; onhs < nhs; onhs++ ) { + PCR_VD_WriteProtectEnable( + GC_heap_sects[onhs].hs_start, + GC_heap_sects[onhs].hs_bytes ); + } + } + + + if (PCR_VD_Clear(GC_vd_base, NPAGES*HBLKSIZE, GC_grungy_bits) + != PCR_ERes_okay) { + ABORT("dirty bit read failed"); + } +} + +GC_bool GC_page_was_dirty(h) +struct hblk *h; +{ + if((ptr_t)h < GC_vd_base || (ptr_t)h >= GC_vd_base + NPAGES*HBLKSIZE) { + return(TRUE); + } + return(GC_grungy_bits[h - (struct hblk *)GC_vd_base] & PCR_VD_DB_dirtyBit); +} + +/*ARGSUSED*/ +void GC_write_hint(h) +struct hblk *h; +{ + PCR_VD_WriteProtectDisable(h, HBLKSIZE); + PCR_VD_WriteProtectEnable(h, HBLKSIZE); +} + +# endif /* PCR_VDB */ + +/* + * Call stack save code for debugging. + * Should probably be in mach_dep.c, but that requires reorganization. + */ +#if defined(SPARC) && !defined(LINUX) +# if defined(SUNOS4) +# include <machine/frame.h> +# else +# if defined (DRSNX) +# include <sys/sparc/frame.h> +# else +# if defined(OPENBSD) +# include <frame.h> +# else +# include <sys/frame.h> +# endif +# endif +# endif +# if NARGS > 6 + --> We only know how to to get the first 6 arguments +# endif + +#ifdef SAVE_CALL_CHAIN +/* Fill in the pc and argument information for up to NFRAMES of my */ +/* callers. Ignore my frame and my callers frame. */ + +#ifdef OPENBSD +# define FR_SAVFP fr_fp +# define FR_SAVPC fr_pc +#else +# define FR_SAVFP fr_savfp +# define FR_SAVPC fr_savpc +#endif + +void GC_save_callers (info) +struct callinfo info[NFRAMES]; +{ + struct frame *frame; + struct frame *fp; + int nframes = 0; + word GC_save_regs_in_stack(); + + frame = (struct frame *) GC_save_regs_in_stack (); + + for (fp = frame -> FR_SAVFP; fp != 0 && nframes < NFRAMES; + fp = fp -> FR_SAVFP, nframes++) { + register int i; + + info[nframes].ci_pc = fp->FR_SAVPC; + for (i = 0; i < NARGS; i++) { + info[nframes].ci_arg[i] = ~(fp->fr_arg[i]); + } + } + if (nframes < NFRAMES) info[nframes].ci_pc = 0; +} + +#endif /* SAVE_CALL_CHAIN */ +#endif /* SPARC */ + + + |