diff options
author | Tatsuya Kinoshita <tats@vega.ocn.ne.jp> | 2011-05-04 07:05:14 +0000 |
---|---|---|
committer | Tatsuya Kinoshita <tats@vega.ocn.ne.jp> | 2011-05-04 07:05:14 +0000 |
commit | 72f72d64a422d6628c4796f5c0bf2e508f134214 (patch) | |
tree | 0c9ea90cc53310832c977265521fb44db24a515e /matrix.c | |
parent | Adding upstream version 0.3 (diff) | |
download | w3m-upstream/0.5.1.tar.gz w3m-upstream/0.5.1.zip |
Adding upstream version 0.5.1upstream/0.5.1
Diffstat (limited to 'matrix.c')
-rw-r--r-- | matrix.c | 275 |
1 files changed, 275 insertions, 0 deletions
diff --git a/matrix.c b/matrix.c new file mode 100644 index 0000000..64fd0ad --- /dev/null +++ b/matrix.c @@ -0,0 +1,275 @@ +/* $Id: matrix.c,v 1.8 2003/04/07 16:27:10 ukai Exp $ */ +/* + * matrix.h, matrix.c: Liner equation solver using LU decomposition. + * + * by K.Okabe Aug. 1999 + * + * LUfactor, LUsolve, Usolve and Lsolve, are based on the functions in + * Meschach Library Version 1.2b. + */ + +/************************************************************************** +** +** Copyright (C) 1993 David E. Steward & Zbigniew Leyk, all rights reserved. +** +** Meschach Library +** +** This Meschach Library is provided "as is" without any express +** or implied warranty of any kind with respect to this software. +** In particular the authors shall not be liable for any direct, +** indirect, special, incidental or consequential damages arising +** in any way from use of the software. +** +** Everyone is granted permission to copy, modify and redistribute this +** Meschach Library, provided: +** 1. All copies contain this copyright notice. +** 2. All modified copies shall carry a notice stating who +** made the last modification and the date of such modification. +** 3. No charge is made for this software or works derived from it. +** This clause shall not be construed as constraining other software +** distributed on the same medium as this software, nor is a +** distribution fee considered a charge. +** +***************************************************************************/ + +#include "config.h" +#include "matrix.h" +#include <gc.h> + +/* + * Macros from "fm.h". + */ + +#define New(type) ((type*)GC_MALLOC(sizeof(type))) +#define NewAtom(type) ((type*)GC_MALLOC_ATOMIC(sizeof(type))) +#define New_N(type,n) ((type*)GC_MALLOC((n)*sizeof(type))) +#define NewAtom_N(type,n) ((type*)GC_MALLOC_ATOMIC((n)*sizeof(type))) +#define Renew_N(type,ptr,n) ((type*)GC_REALLOC((ptr),(n)*sizeof(type))) + +#define SWAPD(a,b) { double tmp = a; a = b; b = tmp; } +#define SWAPI(a,b) { int tmp = a; a = b; b = tmp; } + +#ifdef HAVE_FLOAT_H +#include <float.h> +#endif /* not HAVE_FLOAT_H */ +#if defined(DBL_MAX) +static double Tiny = 10.0 / DBL_MAX; +#elif defined(FLT_MAX) +static double Tiny = 10.0 / FLT_MAX; +#else /* not defined(FLT_MAX) */ +static double Tiny = 1.0e-30; +#endif /* not defined(FLT_MAX */ + +/* + * LUfactor -- gaussian elimination with scaled partial pivoting + * -- Note: returns LU matrix which is A. + */ + +int +LUfactor(Matrix A, int *indexarray) +{ + int dim = A->dim, i, j, k, i_max, k_max; + Vector scale; + double mx, tmp; + + scale = new_vector(dim); + + for (i = 0; i < dim; i++) + indexarray[i] = i; + + for (i = 0; i < dim; i++) { + mx = 0.; + for (j = 0; j < dim; j++) { + tmp = fabs(M_VAL(A, i, j)); + if (mx < tmp) + mx = tmp; + } + scale->ve[i] = mx; + } + + k_max = dim - 1; + for (k = 0; k < k_max; k++) { + mx = 0.; + i_max = -1; + for (i = k; i < dim; i++) { + if (fabs(scale->ve[i]) >= Tiny * fabs(M_VAL(A, i, k))) { + tmp = fabs(M_VAL(A, i, k)) / scale->ve[i]; + if (mx < tmp) { + mx = tmp; + i_max = i; + } + } + } + if (i_max == -1) { + M_VAL(A, k, k) = 0.; + continue; + } + + if (i_max != k) { + SWAPI(indexarray[i_max], indexarray[k]); + for (j = 0; j < dim; j++) + SWAPD(M_VAL(A, i_max, j), M_VAL(A, k, j)); + } + + for (i = k + 1; i < dim; i++) { + tmp = M_VAL(A, i, k) = M_VAL(A, i, k) / M_VAL(A, k, k); + for (j = k + 1; j < dim; j++) + M_VAL(A, i, j) -= tmp * M_VAL(A, k, j); + } + } + return 0; +} + +/* + * LUsolve -- given an LU factorisation in A, solve Ax=b. + */ + +int +LUsolve(Matrix A, int *indexarray, Vector b, Vector x) +{ + int i, dim = A->dim; + + for (i = 0; i < dim; i++) + x->ve[i] = b->ve[indexarray[i]]; + + if (Lsolve(A, x, x, 1.) == -1 || Usolve(A, x, x, 0.) == -1) + return -1; + return 0; +} + +/* m_inverse -- returns inverse of A, provided A is not too rank deficient + * -- uses LU factorisation */ +#if 0 +Matrix +m_inverse(Matrix A, Matrix out) +{ + int *indexarray = NewAtom_N(int, A->dim); + Matrix A1 = new_matrix(A->dim); + m_copy(A, A1); + LUfactor(A1, indexarray); + return LUinverse(A1, indexarray, out); +} +#endif /* 0 */ + +Matrix +LUinverse(Matrix A, int *indexarray, Matrix out) +{ + int i, j, dim = A->dim; + Vector tmp, tmp2; + + if (!out) + out = new_matrix(dim); + tmp = new_vector(dim); + tmp2 = new_vector(dim); + for (i = 0; i < dim; i++) { + for (j = 0; j < dim; j++) + tmp->ve[j] = 0.; + tmp->ve[i] = 1.; + if (LUsolve(A, indexarray, tmp, tmp2) == -1) + return NULL; + for (j = 0; j < dim; j++) + M_VAL(out, j, i) = tmp2->ve[j]; + } + return out; +} + +/* + * Usolve -- back substitution with optional over-riding diagonal + * -- can be in-situ but doesn't need to be. + */ + +int +Usolve(Matrix mat, Vector b, Vector out, double diag) +{ + int i, j, i_lim, dim = mat->dim; + double sum; + + for (i = dim - 1; i >= 0; i--) { + if (b->ve[i] != 0.) + break; + else + out->ve[i] = 0.; + } + i_lim = i; + + for (; i >= 0; i--) { + sum = b->ve[i]; + for (j = i + 1; j <= i_lim; j++) + sum -= M_VAL(mat, i, j) * out->ve[j]; + if (diag == 0.) { + if (fabs(M_VAL(mat, i, i)) <= Tiny * fabs(sum)) + return -1; + else + out->ve[i] = sum / M_VAL(mat, i, i); + } + else + out->ve[i] = sum / diag; + } + + return 0; +} + +/* + * Lsolve -- forward elimination with (optional) default diagonal value. + */ + +int +Lsolve(Matrix mat, Vector b, Vector out, double diag) +{ + int i, j, i_lim, dim = mat->dim; + double sum; + + for (i = 0; i < dim; i++) { + if (b->ve[i] != 0.) + break; + else + out->ve[i] = 0.; + } + i_lim = i; + + for (; i < dim; i++) { + sum = b->ve[i]; + for (j = i_lim; j < i; j++) + sum -= M_VAL(mat, i, j) * out->ve[j]; + if (diag == 0.) { + if (fabs(M_VAL(mat, i, i)) <= Tiny * fabs(sum)) + return -1; + else + out->ve[i] = sum / M_VAL(mat, i, i); + } + else + out->ve[i] = sum / diag; + } + + return 0; +} + +/* + * new_matrix -- generate a nxn matrix. + */ + +Matrix +new_matrix(int n) +{ + Matrix mat; + + mat = New(struct matrix); + mat->dim = n; + mat->me = NewAtom_N(double, n * n); + return mat; +} + +/* + * new_matrix -- generate a n-dimension vector. + */ + +Vector +new_vector(int n) +{ + Vector vec; + + vec = New(struct vector); + vec->dim = n; + vec->ve = NewAtom_N(double, n); + return vec; +} |