diff options
Diffstat (limited to 'gc/cord/cordbscs.c')
-rw-r--r-- | gc/cord/cordbscs.c | 915 |
1 files changed, 0 insertions, 915 deletions
diff --git a/gc/cord/cordbscs.c b/gc/cord/cordbscs.c deleted file mode 100644 index 9fc894d..0000000 --- a/gc/cord/cordbscs.c +++ /dev/null @@ -1,915 +0,0 @@ -/* - * Copyright (c) 1993-1994 by Xerox Corporation. All rights reserved. - * - * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED - * OR IMPLIED. ANY USE IS AT YOUR OWN RISK. - * - * Permission is hereby granted to use or copy this program - * for any purpose, provided the above notices are retained on all copies. - * Permission to modify the code and to distribute modified code is granted, - * provided the above notices are retained, and a notice that the code was - * modified is included with the above copyright notice. - * - * Author: Hans-J. Boehm (boehm@parc.xerox.com) - */ -/* Boehm, October 3, 1994 5:19 pm PDT */ -# include "gc.h" -# include "cord.h" -# include <stdlib.h> -# include <stdio.h> -# include <string.h> - -/* An implementation of the cord primitives. These are the only */ -/* Functions that understand the representation. We perform only */ -/* minimal checks on arguments to these functions. Out of bounds */ -/* arguments to the iteration functions may result in client functions */ -/* invoked on garbage data. In most cases, client functions should be */ -/* programmed defensively enough that this does not result in memory */ -/* smashes. */ - -typedef void (* oom_fn)(void); - -oom_fn CORD_oom_fn = (oom_fn) 0; - -# define OUT_OF_MEMORY { if (CORD_oom_fn != (oom_fn) 0) (*CORD_oom_fn)(); \ - ABORT("Out of memory\n"); } -# define ABORT(msg) { fprintf(stderr, "%s\n", msg); abort(); } - -typedef unsigned long word; - -typedef union { - struct Concatenation { - char null; - char header; - char depth; /* concatenation nesting depth. */ - unsigned char left_len; - /* Length of left child if it is sufficiently */ - /* short; 0 otherwise. */ -# define MAX_LEFT_LEN 255 - word len; - CORD left; /* length(left) > 0 */ - CORD right; /* length(right) > 0 */ - } concatenation; - struct Function { - char null; - char header; - char depth; /* always 0 */ - char left_len; /* always 0 */ - word len; - CORD_fn fn; - void * client_data; - } function; - struct Generic { - char null; - char header; - char depth; - char left_len; - word len; - } generic; - char string[1]; -} CordRep; - -# define CONCAT_HDR 1 - -# define FN_HDR 4 -# define SUBSTR_HDR 6 - /* Substring nodes are a special case of function nodes. */ - /* The client_data field is known to point to a substr_args */ - /* structure, and the function is either CORD_apply_access_fn */ - /* or CORD_index_access_fn. */ - -/* The following may be applied only to function and concatenation nodes: */ -#define IS_CONCATENATION(s) (((CordRep *)s)->generic.header == CONCAT_HDR) - -#define IS_FUNCTION(s) ((((CordRep *)s)->generic.header & FN_HDR) != 0) - -#define IS_SUBSTR(s) (((CordRep *)s)->generic.header == SUBSTR_HDR) - -#define LEN(s) (((CordRep *)s) -> generic.len) -#define DEPTH(s) (((CordRep *)s) -> generic.depth) -#define GEN_LEN(s) (CORD_IS_STRING(s) ? strlen(s) : LEN(s)) - -#define LEFT_LEN(c) ((c) -> left_len != 0? \ - (c) -> left_len \ - : (CORD_IS_STRING((c) -> left) ? \ - (c) -> len - GEN_LEN((c) -> right) \ - : LEN((c) -> left))) - -#define SHORT_LIMIT (sizeof(CordRep) - 1) - /* Cords shorter than this are C strings */ - - -/* Dump the internal representation of x to stdout, with initial */ -/* indentation level n. */ -void CORD_dump_inner(CORD x, unsigned n) -{ - register size_t i; - - for (i = 0; i < (size_t)n; i++) { - fputs(" ", stdout); - } - if (x == 0) { - fputs("NIL\n", stdout); - } else if (CORD_IS_STRING(x)) { - for (i = 0; i <= SHORT_LIMIT; i++) { - if (x[i] == '\0') break; - putchar(x[i]); - } - if (x[i] != '\0') fputs("...", stdout); - putchar('\n'); - } else if (IS_CONCATENATION(x)) { - register struct Concatenation * conc = - &(((CordRep *)x) -> concatenation); - printf("Concatenation: %p (len: %d, depth: %d)\n", - x, (int)(conc -> len), (int)(conc -> depth)); - CORD_dump_inner(conc -> left, n+1); - CORD_dump_inner(conc -> right, n+1); - } else /* function */{ - register struct Function * func = - &(((CordRep *)x) -> function); - if (IS_SUBSTR(x)) printf("(Substring) "); - printf("Function: %p (len: %d): ", x, (int)(func -> len)); - for (i = 0; i < 20 && i < func -> len; i++) { - putchar((*(func -> fn))(i, func -> client_data)); - } - if (i < func -> len) fputs("...", stdout); - putchar('\n'); - } -} - -/* Dump the internal representation of x to stdout */ -void CORD_dump(CORD x) -{ - CORD_dump_inner(x, 0); - fflush(stdout); -} - -CORD CORD_cat_char_star(CORD x, const char * y, size_t leny) -{ - register size_t result_len; - register size_t lenx; - register int depth; - - if (x == CORD_EMPTY) return(y); - if (leny == 0) return(x); - if (CORD_IS_STRING(x)) { - lenx = strlen(x); - result_len = lenx + leny; - if (result_len <= SHORT_LIMIT) { - register char * result = GC_MALLOC_ATOMIC(result_len+1); - - if (result == 0) OUT_OF_MEMORY; - memcpy(result, x, lenx); - memcpy(result + lenx, y, leny); - result[result_len] = '\0'; - return((CORD) result); - } else { - depth = 1; - } - } else { - register CORD right; - register CORD left; - register char * new_right; - register size_t right_len; - - lenx = LEN(x); - - if (leny <= SHORT_LIMIT/2 - && IS_CONCATENATION(x) - && CORD_IS_STRING(right = ((CordRep *)x) -> concatenation.right)) { - /* Merge y into right part of x. */ - if (!CORD_IS_STRING(left = ((CordRep *)x) -> concatenation.left)) { - right_len = lenx - LEN(left); - } else if (((CordRep *)x) -> concatenation.left_len != 0) { - right_len = lenx - ((CordRep *)x) -> concatenation.left_len; - } else { - right_len = strlen(right); - } - result_len = right_len + leny; /* length of new_right */ - if (result_len <= SHORT_LIMIT) { - new_right = GC_MALLOC_ATOMIC(result_len + 1); - memcpy(new_right, right, right_len); - memcpy(new_right + right_len, y, leny); - new_right[result_len] = '\0'; - y = new_right; - leny = result_len; - x = left; - lenx -= right_len; - /* Now fall through to concatenate the two pieces: */ - } - if (CORD_IS_STRING(x)) { - depth = 1; - } else { - depth = DEPTH(x) + 1; - } - } else { - depth = DEPTH(x) + 1; - } - result_len = lenx + leny; - } - { - /* The general case; lenx, result_len is known: */ - register struct Concatenation * result; - - result = GC_NEW(struct Concatenation); - if (result == 0) OUT_OF_MEMORY; - result->header = CONCAT_HDR; - result->depth = depth; - if (lenx <= MAX_LEFT_LEN) result->left_len = lenx; - result->len = result_len; - result->left = x; - result->right = y; - if (depth > MAX_DEPTH) { - return(CORD_balance((CORD)result)); - } else { - return((CORD) result); - } - } -} - - -CORD CORD_cat(CORD x, CORD y) -{ - register size_t result_len; - register int depth; - register size_t lenx; - - if (x == CORD_EMPTY) return(y); - if (y == CORD_EMPTY) return(x); - if (CORD_IS_STRING(y)) { - return(CORD_cat_char_star(x, y, strlen(y))); - } else if (CORD_IS_STRING(x)) { - lenx = strlen(x); - depth = DEPTH(y) + 1; - } else { - register int depthy = DEPTH(y); - - lenx = LEN(x); - depth = DEPTH(x) + 1; - if (depthy >= depth) depth = depthy + 1; - } - result_len = lenx + LEN(y); - { - register struct Concatenation * result; - - result = GC_NEW(struct Concatenation); - if (result == 0) OUT_OF_MEMORY; - result->header = CONCAT_HDR; - result->depth = depth; - if (lenx <= MAX_LEFT_LEN) result->left_len = lenx; - result->len = result_len; - result->left = x; - result->right = y; - return((CORD) result); - } -} - - - -CORD CORD_from_fn(CORD_fn fn, void * client_data, size_t len) -{ - if (len <= 0) return(0); - if (len <= SHORT_LIMIT) { - register char * result; - register size_t i; - char buf[SHORT_LIMIT+1]; - register char c; - - for (i = 0; i < len; i++) { - c = (*fn)(i, client_data); - if (c == '\0') goto gen_case; - buf[i] = c; - } - buf[i] = '\0'; - result = GC_MALLOC_ATOMIC(len+1); - if (result == 0) OUT_OF_MEMORY; - strcpy(result, buf); - result[len] = '\0'; - return((CORD) result); - } - gen_case: - { - register struct Function * result; - - result = GC_NEW(struct Function); - if (result == 0) OUT_OF_MEMORY; - result->header = FN_HDR; - /* depth is already 0 */ - result->len = len; - result->fn = fn; - result->client_data = client_data; - return((CORD) result); - } -} - -size_t CORD_len(CORD x) -{ - if (x == 0) { - return(0); - } else { - return(GEN_LEN(x)); - } -} - -struct substr_args { - CordRep * sa_cord; - size_t sa_index; -}; - -char CORD_index_access_fn(size_t i, void * client_data) -{ - register struct substr_args *descr = (struct substr_args *)client_data; - - return(((char *)(descr->sa_cord))[i + descr->sa_index]); -} - -char CORD_apply_access_fn(size_t i, void * client_data) -{ - register struct substr_args *descr = (struct substr_args *)client_data; - register struct Function * fn_cord = &(descr->sa_cord->function); - - return((*(fn_cord->fn))(i + descr->sa_index, fn_cord->client_data)); -} - -/* A version of CORD_substr that simply returns a function node, thus */ -/* postponing its work. The fourth argument is a function that may */ -/* be used for efficient access to the ith character. */ -/* Assumes i >= 0 and i + n < length(x). */ -CORD CORD_substr_closure(CORD x, size_t i, size_t n, CORD_fn f) -{ - register struct substr_args * sa = GC_NEW(struct substr_args); - CORD result; - - if (sa == 0) OUT_OF_MEMORY; - sa->sa_cord = (CordRep *)x; - sa->sa_index = i; - result = CORD_from_fn(f, (void *)sa, n); - ((CordRep *)result) -> function.header = SUBSTR_HDR; - return (result); -} - -# define SUBSTR_LIMIT (10 * SHORT_LIMIT) - /* Substrings of function nodes and flat strings shorter than */ - /* this are flat strings. Othewise we use a functional */ - /* representation, which is significantly slower to access. */ - -/* A version of CORD_substr that assumes i >= 0, n > 0, and i + n < length(x).*/ -CORD CORD_substr_checked(CORD x, size_t i, size_t n) -{ - if (CORD_IS_STRING(x)) { - if (n > SUBSTR_LIMIT) { - return(CORD_substr_closure(x, i, n, CORD_index_access_fn)); - } else { - register char * result = GC_MALLOC_ATOMIC(n+1); - - if (result == 0) OUT_OF_MEMORY; - strncpy(result, x+i, n); - result[n] = '\0'; - return(result); - } - } else if (IS_CONCATENATION(x)) { - register struct Concatenation * conc - = &(((CordRep *)x) -> concatenation); - register size_t left_len; - register size_t right_len; - - left_len = LEFT_LEN(conc); - right_len = conc -> len - left_len; - if (i >= left_len) { - if (n == right_len) return(conc -> right); - return(CORD_substr_checked(conc -> right, i - left_len, n)); - } else if (i+n <= left_len) { - if (n == left_len) return(conc -> left); - return(CORD_substr_checked(conc -> left, i, n)); - } else { - /* Need at least one character from each side. */ - register CORD left_part; - register CORD right_part; - register size_t left_part_len = left_len - i; - - if (i == 0) { - left_part = conc -> left; - } else { - left_part = CORD_substr_checked(conc -> left, i, left_part_len); - } - if (i + n == right_len + left_len) { - right_part = conc -> right; - } else { - right_part = CORD_substr_checked(conc -> right, 0, - n - left_part_len); - } - return(CORD_cat(left_part, right_part)); - } - } else /* function */ { - if (n > SUBSTR_LIMIT) { - if (IS_SUBSTR(x)) { - /* Avoid nesting substring nodes. */ - register struct Function * f = &(((CordRep *)x) -> function); - register struct substr_args *descr = - (struct substr_args *)(f -> client_data); - - return(CORD_substr_closure((CORD)descr->sa_cord, - i + descr->sa_index, - n, f -> fn)); - } else { - return(CORD_substr_closure(x, i, n, CORD_apply_access_fn)); - } - } else { - char * result; - register struct Function * f = &(((CordRep *)x) -> function); - char buf[SUBSTR_LIMIT+1]; - register char * p = buf; - register char c; - register int j; - register int lim = i + n; - - for (j = i; j < lim; j++) { - c = (*(f -> fn))(j, f -> client_data); - if (c == '\0') { - return(CORD_substr_closure(x, i, n, CORD_apply_access_fn)); - } - *p++ = c; - } - *p = '\0'; - result = GC_MALLOC_ATOMIC(n+1); - if (result == 0) OUT_OF_MEMORY; - strcpy(result, buf); - return(result); - } - } -} - -CORD CORD_substr(CORD x, size_t i, size_t n) -{ - register size_t len = CORD_len(x); - - if (i >= len || n <= 0) return(0); - /* n < 0 is impossible in a correct C implementation, but */ - /* quite possible under SunOS 4.X. */ - if (i + n > len) n = len - i; -# ifndef __STDC__ - if (i < 0) ABORT("CORD_substr: second arg. negative"); - /* Possible only if both client and C implementation are buggy. */ - /* But empirically this happens frequently. */ -# endif - return(CORD_substr_checked(x, i, n)); -} - -/* See cord.h for definition. We assume i is in range. */ -int CORD_iter5(CORD x, size_t i, CORD_iter_fn f1, - CORD_batched_iter_fn f2, void * client_data) -{ - if (x == 0) return(0); - if (CORD_IS_STRING(x)) { - register const char *p = x+i; - - if (*p == '\0') ABORT("2nd arg to CORD_iter5 too big"); - if (f2 != CORD_NO_FN) { - return((*f2)(p, client_data)); - } else { - while (*p) { - if ((*f1)(*p, client_data)) return(1); - p++; - } - return(0); - } - } else if (IS_CONCATENATION(x)) { - register struct Concatenation * conc - = &(((CordRep *)x) -> concatenation); - - - if (i > 0) { - register size_t left_len = LEFT_LEN(conc); - - if (i >= left_len) { - return(CORD_iter5(conc -> right, i - left_len, f1, f2, - client_data)); - } - } - if (CORD_iter5(conc -> left, i, f1, f2, client_data)) { - return(1); - } - return(CORD_iter5(conc -> right, 0, f1, f2, client_data)); - } else /* function */ { - register struct Function * f = &(((CordRep *)x) -> function); - register size_t j; - register size_t lim = f -> len; - - for (j = i; j < lim; j++) { - if ((*f1)((*(f -> fn))(j, f -> client_data), client_data)) { - return(1); - } - } - return(0); - } -} - -#undef CORD_iter -int CORD_iter(CORD x, CORD_iter_fn f1, void * client_data) -{ - return(CORD_iter5(x, 0, f1, CORD_NO_FN, client_data)); -} - -int CORD_riter4(CORD x, size_t i, CORD_iter_fn f1, void * client_data) -{ - if (x == 0) return(0); - if (CORD_IS_STRING(x)) { - register const char *p = x + i; - register char c; - - for(;;) { - c = *p; - if (c == '\0') ABORT("2nd arg to CORD_riter4 too big"); - if ((*f1)(c, client_data)) return(1); - if (p == x) break; - p--; - } - return(0); - } else if (IS_CONCATENATION(x)) { - register struct Concatenation * conc - = &(((CordRep *)x) -> concatenation); - register CORD left_part = conc -> left; - register size_t left_len; - - left_len = LEFT_LEN(conc); - if (i >= left_len) { - if (CORD_riter4(conc -> right, i - left_len, f1, client_data)) { - return(1); - } - return(CORD_riter4(left_part, left_len - 1, f1, client_data)); - } else { - return(CORD_riter4(left_part, i, f1, client_data)); - } - } else /* function */ { - register struct Function * f = &(((CordRep *)x) -> function); - register size_t j; - - for (j = i; ; j--) { - if ((*f1)((*(f -> fn))(j, f -> client_data), client_data)) { - return(1); - } - if (j == 0) return(0); - } - } -} - -int CORD_riter(CORD x, CORD_iter_fn f1, void * client_data) -{ - return(CORD_riter4(x, CORD_len(x) - 1, f1, client_data)); -} - -/* - * The following functions are concerned with balancing cords. - * Strategy: - * Scan the cord from left to right, keeping the cord scanned so far - * as a forest of balanced trees of exponentialy decreasing length. - * When a new subtree needs to be added to the forest, we concatenate all - * shorter ones to the new tree in the appropriate order, and then insert - * the result into the forest. - * Crucial invariants: - * 1. The concatenation of the forest (in decreasing order) with the - * unscanned part of the rope is equal to the rope being balanced. - * 2. All trees in the forest are balanced. - * 3. forest[i] has depth at most i. - */ - -typedef struct { - CORD c; - size_t len; /* Actual length of c */ -} ForestElement; - -static size_t min_len [ MAX_DEPTH ]; - -static int min_len_init = 0; - -int CORD_max_len; - -typedef ForestElement Forest [ MAX_DEPTH ]; - /* forest[i].len >= fib(i+1) */ - /* The string is the concatenation */ - /* of the forest in order of DECREASING */ - /* indices. */ - -void CORD_init_min_len() -{ - register int i; - register size_t last, previous, current; - - min_len[0] = previous = 1; - min_len[1] = last = 2; - for (i = 2; i < MAX_DEPTH; i++) { - current = last + previous; - if (current < last) /* overflow */ current = last; - min_len[i] = current; - previous = last; - last = current; - } - CORD_max_len = last - 1; - min_len_init = 1; -} - - -void CORD_init_forest(ForestElement * forest, size_t max_len) -{ - register int i; - - for (i = 0; i < MAX_DEPTH; i++) { - forest[i].c = 0; - if (min_len[i] > max_len) return; - } - ABORT("Cord too long"); -} - -/* Add a leaf to the appropriate level in the forest, cleaning */ -/* out lower levels as necessary. */ -/* Also works if x is a balanced tree of concatenations; however */ -/* in this case an extra concatenation node may be inserted above x; */ -/* This node should not be counted in the statement of the invariants. */ -void CORD_add_forest(ForestElement * forest, CORD x, size_t len) -{ - register int i = 0; - register CORD sum = CORD_EMPTY; - register size_t sum_len = 0; - - while (len > min_len[i + 1]) { - if (forest[i].c != 0) { - sum = CORD_cat(forest[i].c, sum); - sum_len += forest[i].len; - forest[i].c = 0; - } - i++; - } - /* Sum has depth at most 1 greter than what would be required */ - /* for balance. */ - sum = CORD_cat(sum, x); - sum_len += len; - /* If x was a leaf, then sum is now balanced. To see this */ - /* consider the two cases in which forest[i-1] either is or is */ - /* not empty. */ - while (sum_len >= min_len[i]) { - if (forest[i].c != 0) { - sum = CORD_cat(forest[i].c, sum); - sum_len += forest[i].len; - /* This is again balanced, since sum was balanced, and has */ - /* allowable depth that differs from i by at most 1. */ - forest[i].c = 0; - } - i++; - } - i--; - forest[i].c = sum; - forest[i].len = sum_len; -} - -CORD CORD_concat_forest(ForestElement * forest, size_t expected_len) -{ - register int i = 0; - CORD sum = 0; - size_t sum_len = 0; - - while (sum_len != expected_len) { - if (forest[i].c != 0) { - sum = CORD_cat(forest[i].c, sum); - sum_len += forest[i].len; - } - i++; - } - return(sum); -} - -/* Insert the frontier of x into forest. Balanced subtrees are */ -/* treated as leaves. This potentially adds one to the depth */ -/* of the final tree. */ -void CORD_balance_insert(CORD x, size_t len, ForestElement * forest) -{ - register int depth; - - if (CORD_IS_STRING(x)) { - CORD_add_forest(forest, x, len); - } else if (IS_CONCATENATION(x) - && ((depth = DEPTH(x)) >= MAX_DEPTH - || len < min_len[depth])) { - register struct Concatenation * conc - = &(((CordRep *)x) -> concatenation); - size_t left_len = LEFT_LEN(conc); - - CORD_balance_insert(conc -> left, left_len, forest); - CORD_balance_insert(conc -> right, len - left_len, forest); - } else /* function or balanced */ { - CORD_add_forest(forest, x, len); - } -} - - -CORD CORD_balance(CORD x) -{ - Forest forest; - register size_t len; - - if (x == 0) return(0); - if (CORD_IS_STRING(x)) return(x); - if (!min_len_init) CORD_init_min_len(); - len = LEN(x); - CORD_init_forest(forest, len); - CORD_balance_insert(x, len, forest); - return(CORD_concat_forest(forest, len)); -} - - -/* Position primitives */ - -/* Private routines to deal with the hard cases only: */ - -/* P contains a prefix of the path to cur_pos. Extend it to a full */ -/* path and set up leaf info. */ -/* Return 0 if past the end of cord, 1 o.w. */ -void CORD__extend_path(register CORD_pos p) -{ - register struct CORD_pe * current_pe = &(p[0].path[p[0].path_len]); - register CORD top = current_pe -> pe_cord; - register size_t pos = p[0].cur_pos; - register size_t top_pos = current_pe -> pe_start_pos; - register size_t top_len = GEN_LEN(top); - - /* Fill in the rest of the path. */ - while(!CORD_IS_STRING(top) && IS_CONCATENATION(top)) { - register struct Concatenation * conc = - &(((CordRep *)top) -> concatenation); - register size_t left_len; - - left_len = LEFT_LEN(conc); - current_pe++; - if (pos >= top_pos + left_len) { - current_pe -> pe_cord = top = conc -> right; - current_pe -> pe_start_pos = top_pos = top_pos + left_len; - top_len -= left_len; - } else { - current_pe -> pe_cord = top = conc -> left; - current_pe -> pe_start_pos = top_pos; - top_len = left_len; - } - p[0].path_len++; - } - /* Fill in leaf description for fast access. */ - if (CORD_IS_STRING(top)) { - p[0].cur_leaf = top; - p[0].cur_start = top_pos; - p[0].cur_end = top_pos + top_len; - } else { - p[0].cur_end = 0; - } - if (pos >= top_pos + top_len) p[0].path_len = CORD_POS_INVALID; -} - -char CORD__pos_fetch(register CORD_pos p) -{ - /* Leaf is a function node */ - struct CORD_pe * pe = &((p)[0].path[(p)[0].path_len]); - CORD leaf = pe -> pe_cord; - register struct Function * f = &(((CordRep *)leaf) -> function); - - if (!IS_FUNCTION(leaf)) ABORT("CORD_pos_fetch: bad leaf"); - return ((*(f -> fn))(p[0].cur_pos - pe -> pe_start_pos, f -> client_data)); -} - -void CORD__next(register CORD_pos p) -{ - register size_t cur_pos = p[0].cur_pos + 1; - register struct CORD_pe * current_pe = &((p)[0].path[(p)[0].path_len]); - register CORD leaf = current_pe -> pe_cord; - - /* Leaf is not a string or we're at end of leaf */ - p[0].cur_pos = cur_pos; - if (!CORD_IS_STRING(leaf)) { - /* Function leaf */ - register struct Function * f = &(((CordRep *)leaf) -> function); - register size_t start_pos = current_pe -> pe_start_pos; - register size_t end_pos = start_pos + f -> len; - - if (cur_pos < end_pos) { - /* Fill cache and return. */ - register size_t i; - register size_t limit = cur_pos + FUNCTION_BUF_SZ; - register CORD_fn fn = f -> fn; - register void * client_data = f -> client_data; - - if (limit > end_pos) { - limit = end_pos; - } - for (i = cur_pos; i < limit; i++) { - p[0].function_buf[i - cur_pos] = - (*fn)(i - start_pos, client_data); - } - p[0].cur_start = cur_pos; - p[0].cur_leaf = p[0].function_buf; - p[0].cur_end = limit; - return; - } - } - /* End of leaf */ - /* Pop the stack until we find two concatenation nodes with the */ - /* same start position: this implies we were in left part. */ - { - while (p[0].path_len > 0 - && current_pe[0].pe_start_pos != current_pe[-1].pe_start_pos) { - p[0].path_len--; - current_pe--; - } - if (p[0].path_len == 0) { - p[0].path_len = CORD_POS_INVALID; - return; - } - } - p[0].path_len--; - CORD__extend_path(p); -} - -void CORD__prev(register CORD_pos p) -{ - register struct CORD_pe * pe = &(p[0].path[p[0].path_len]); - - if (p[0].cur_pos == 0) { - p[0].path_len = CORD_POS_INVALID; - return; - } - p[0].cur_pos--; - if (p[0].cur_pos >= pe -> pe_start_pos) return; - - /* Beginning of leaf */ - - /* Pop the stack until we find two concatenation nodes with the */ - /* different start position: this implies we were in right part. */ - { - register struct CORD_pe * current_pe = &((p)[0].path[(p)[0].path_len]); - - while (p[0].path_len > 0 - && current_pe[0].pe_start_pos == current_pe[-1].pe_start_pos) { - p[0].path_len--; - current_pe--; - } - } - p[0].path_len--; - CORD__extend_path(p); -} - -#undef CORD_pos_fetch -#undef CORD_next -#undef CORD_prev -#undef CORD_pos_to_index -#undef CORD_pos_to_cord -#undef CORD_pos_valid - -char CORD_pos_fetch(register CORD_pos p) -{ - if (p[0].cur_start <= p[0].cur_pos && p[0].cur_pos < p[0].cur_end) { - return(p[0].cur_leaf[p[0].cur_pos - p[0].cur_start]); - } else { - return(CORD__pos_fetch(p)); - } -} - -void CORD_next(CORD_pos p) -{ - if (p[0].cur_pos < p[0].cur_end - 1) { - p[0].cur_pos++; - } else { - CORD__next(p); - } -} - -void CORD_prev(CORD_pos p) -{ - if (p[0].cur_end != 0 && p[0].cur_pos > p[0].cur_start) { - p[0].cur_pos--; - } else { - CORD__prev(p); - } -} - -size_t CORD_pos_to_index(CORD_pos p) -{ - return(p[0].cur_pos); -} - -CORD CORD_pos_to_cord(CORD_pos p) -{ - return(p[0].path[0].pe_cord); -} - -int CORD_pos_valid(CORD_pos p) -{ - return(p[0].path_len != CORD_POS_INVALID); -} - -void CORD_set_pos(CORD_pos p, CORD x, size_t i) -{ - if (x == CORD_EMPTY) { - p[0].path_len = CORD_POS_INVALID; - return; - } - p[0].path[0].pe_cord = x; - p[0].path[0].pe_start_pos = 0; - p[0].path_len = 0; - p[0].cur_pos = i; - CORD__extend_path(p); -} |