diff options
Diffstat (limited to 'gc/cord/cordbscs.c')
-rw-r--r-- | gc/cord/cordbscs.c | 915 |
1 files changed, 915 insertions, 0 deletions
diff --git a/gc/cord/cordbscs.c b/gc/cord/cordbscs.c new file mode 100644 index 0000000..9fc894d --- /dev/null +++ b/gc/cord/cordbscs.c @@ -0,0 +1,915 @@ +/* + * Copyright (c) 1993-1994 by Xerox Corporation. All rights reserved. + * + * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED + * OR IMPLIED. ANY USE IS AT YOUR OWN RISK. + * + * Permission is hereby granted to use or copy this program + * for any purpose, provided the above notices are retained on all copies. + * Permission to modify the code and to distribute modified code is granted, + * provided the above notices are retained, and a notice that the code was + * modified is included with the above copyright notice. + * + * Author: Hans-J. Boehm (boehm@parc.xerox.com) + */ +/* Boehm, October 3, 1994 5:19 pm PDT */ +# include "gc.h" +# include "cord.h" +# include <stdlib.h> +# include <stdio.h> +# include <string.h> + +/* An implementation of the cord primitives. These are the only */ +/* Functions that understand the representation. We perform only */ +/* minimal checks on arguments to these functions. Out of bounds */ +/* arguments to the iteration functions may result in client functions */ +/* invoked on garbage data. In most cases, client functions should be */ +/* programmed defensively enough that this does not result in memory */ +/* smashes. */ + +typedef void (* oom_fn)(void); + +oom_fn CORD_oom_fn = (oom_fn) 0; + +# define OUT_OF_MEMORY { if (CORD_oom_fn != (oom_fn) 0) (*CORD_oom_fn)(); \ + ABORT("Out of memory\n"); } +# define ABORT(msg) { fprintf(stderr, "%s\n", msg); abort(); } + +typedef unsigned long word; + +typedef union { + struct Concatenation { + char null; + char header; + char depth; /* concatenation nesting depth. */ + unsigned char left_len; + /* Length of left child if it is sufficiently */ + /* short; 0 otherwise. */ +# define MAX_LEFT_LEN 255 + word len; + CORD left; /* length(left) > 0 */ + CORD right; /* length(right) > 0 */ + } concatenation; + struct Function { + char null; + char header; + char depth; /* always 0 */ + char left_len; /* always 0 */ + word len; + CORD_fn fn; + void * client_data; + } function; + struct Generic { + char null; + char header; + char depth; + char left_len; + word len; + } generic; + char string[1]; +} CordRep; + +# define CONCAT_HDR 1 + +# define FN_HDR 4 +# define SUBSTR_HDR 6 + /* Substring nodes are a special case of function nodes. */ + /* The client_data field is known to point to a substr_args */ + /* structure, and the function is either CORD_apply_access_fn */ + /* or CORD_index_access_fn. */ + +/* The following may be applied only to function and concatenation nodes: */ +#define IS_CONCATENATION(s) (((CordRep *)s)->generic.header == CONCAT_HDR) + +#define IS_FUNCTION(s) ((((CordRep *)s)->generic.header & FN_HDR) != 0) + +#define IS_SUBSTR(s) (((CordRep *)s)->generic.header == SUBSTR_HDR) + +#define LEN(s) (((CordRep *)s) -> generic.len) +#define DEPTH(s) (((CordRep *)s) -> generic.depth) +#define GEN_LEN(s) (CORD_IS_STRING(s) ? strlen(s) : LEN(s)) + +#define LEFT_LEN(c) ((c) -> left_len != 0? \ + (c) -> left_len \ + : (CORD_IS_STRING((c) -> left) ? \ + (c) -> len - GEN_LEN((c) -> right) \ + : LEN((c) -> left))) + +#define SHORT_LIMIT (sizeof(CordRep) - 1) + /* Cords shorter than this are C strings */ + + +/* Dump the internal representation of x to stdout, with initial */ +/* indentation level n. */ +void CORD_dump_inner(CORD x, unsigned n) +{ + register size_t i; + + for (i = 0; i < (size_t)n; i++) { + fputs(" ", stdout); + } + if (x == 0) { + fputs("NIL\n", stdout); + } else if (CORD_IS_STRING(x)) { + for (i = 0; i <= SHORT_LIMIT; i++) { + if (x[i] == '\0') break; + putchar(x[i]); + } + if (x[i] != '\0') fputs("...", stdout); + putchar('\n'); + } else if (IS_CONCATENATION(x)) { + register struct Concatenation * conc = + &(((CordRep *)x) -> concatenation); + printf("Concatenation: %p (len: %d, depth: %d)\n", + x, (int)(conc -> len), (int)(conc -> depth)); + CORD_dump_inner(conc -> left, n+1); + CORD_dump_inner(conc -> right, n+1); + } else /* function */{ + register struct Function * func = + &(((CordRep *)x) -> function); + if (IS_SUBSTR(x)) printf("(Substring) "); + printf("Function: %p (len: %d): ", x, (int)(func -> len)); + for (i = 0; i < 20 && i < func -> len; i++) { + putchar((*(func -> fn))(i, func -> client_data)); + } + if (i < func -> len) fputs("...", stdout); + putchar('\n'); + } +} + +/* Dump the internal representation of x to stdout */ +void CORD_dump(CORD x) +{ + CORD_dump_inner(x, 0); + fflush(stdout); +} + +CORD CORD_cat_char_star(CORD x, const char * y, size_t leny) +{ + register size_t result_len; + register size_t lenx; + register int depth; + + if (x == CORD_EMPTY) return(y); + if (leny == 0) return(x); + if (CORD_IS_STRING(x)) { + lenx = strlen(x); + result_len = lenx + leny; + if (result_len <= SHORT_LIMIT) { + register char * result = GC_MALLOC_ATOMIC(result_len+1); + + if (result == 0) OUT_OF_MEMORY; + memcpy(result, x, lenx); + memcpy(result + lenx, y, leny); + result[result_len] = '\0'; + return((CORD) result); + } else { + depth = 1; + } + } else { + register CORD right; + register CORD left; + register char * new_right; + register size_t right_len; + + lenx = LEN(x); + + if (leny <= SHORT_LIMIT/2 + && IS_CONCATENATION(x) + && CORD_IS_STRING(right = ((CordRep *)x) -> concatenation.right)) { + /* Merge y into right part of x. */ + if (!CORD_IS_STRING(left = ((CordRep *)x) -> concatenation.left)) { + right_len = lenx - LEN(left); + } else if (((CordRep *)x) -> concatenation.left_len != 0) { + right_len = lenx - ((CordRep *)x) -> concatenation.left_len; + } else { + right_len = strlen(right); + } + result_len = right_len + leny; /* length of new_right */ + if (result_len <= SHORT_LIMIT) { + new_right = GC_MALLOC_ATOMIC(result_len + 1); + memcpy(new_right, right, right_len); + memcpy(new_right + right_len, y, leny); + new_right[result_len] = '\0'; + y = new_right; + leny = result_len; + x = left; + lenx -= right_len; + /* Now fall through to concatenate the two pieces: */ + } + if (CORD_IS_STRING(x)) { + depth = 1; + } else { + depth = DEPTH(x) + 1; + } + } else { + depth = DEPTH(x) + 1; + } + result_len = lenx + leny; + } + { + /* The general case; lenx, result_len is known: */ + register struct Concatenation * result; + + result = GC_NEW(struct Concatenation); + if (result == 0) OUT_OF_MEMORY; + result->header = CONCAT_HDR; + result->depth = depth; + if (lenx <= MAX_LEFT_LEN) result->left_len = lenx; + result->len = result_len; + result->left = x; + result->right = y; + if (depth > MAX_DEPTH) { + return(CORD_balance((CORD)result)); + } else { + return((CORD) result); + } + } +} + + +CORD CORD_cat(CORD x, CORD y) +{ + register size_t result_len; + register int depth; + register size_t lenx; + + if (x == CORD_EMPTY) return(y); + if (y == CORD_EMPTY) return(x); + if (CORD_IS_STRING(y)) { + return(CORD_cat_char_star(x, y, strlen(y))); + } else if (CORD_IS_STRING(x)) { + lenx = strlen(x); + depth = DEPTH(y) + 1; + } else { + register int depthy = DEPTH(y); + + lenx = LEN(x); + depth = DEPTH(x) + 1; + if (depthy >= depth) depth = depthy + 1; + } + result_len = lenx + LEN(y); + { + register struct Concatenation * result; + + result = GC_NEW(struct Concatenation); + if (result == 0) OUT_OF_MEMORY; + result->header = CONCAT_HDR; + result->depth = depth; + if (lenx <= MAX_LEFT_LEN) result->left_len = lenx; + result->len = result_len; + result->left = x; + result->right = y; + return((CORD) result); + } +} + + + +CORD CORD_from_fn(CORD_fn fn, void * client_data, size_t len) +{ + if (len <= 0) return(0); + if (len <= SHORT_LIMIT) { + register char * result; + register size_t i; + char buf[SHORT_LIMIT+1]; + register char c; + + for (i = 0; i < len; i++) { + c = (*fn)(i, client_data); + if (c == '\0') goto gen_case; + buf[i] = c; + } + buf[i] = '\0'; + result = GC_MALLOC_ATOMIC(len+1); + if (result == 0) OUT_OF_MEMORY; + strcpy(result, buf); + result[len] = '\0'; + return((CORD) result); + } + gen_case: + { + register struct Function * result; + + result = GC_NEW(struct Function); + if (result == 0) OUT_OF_MEMORY; + result->header = FN_HDR; + /* depth is already 0 */ + result->len = len; + result->fn = fn; + result->client_data = client_data; + return((CORD) result); + } +} + +size_t CORD_len(CORD x) +{ + if (x == 0) { + return(0); + } else { + return(GEN_LEN(x)); + } +} + +struct substr_args { + CordRep * sa_cord; + size_t sa_index; +}; + +char CORD_index_access_fn(size_t i, void * client_data) +{ + register struct substr_args *descr = (struct substr_args *)client_data; + + return(((char *)(descr->sa_cord))[i + descr->sa_index]); +} + +char CORD_apply_access_fn(size_t i, void * client_data) +{ + register struct substr_args *descr = (struct substr_args *)client_data; + register struct Function * fn_cord = &(descr->sa_cord->function); + + return((*(fn_cord->fn))(i + descr->sa_index, fn_cord->client_data)); +} + +/* A version of CORD_substr that simply returns a function node, thus */ +/* postponing its work. The fourth argument is a function that may */ +/* be used for efficient access to the ith character. */ +/* Assumes i >= 0 and i + n < length(x). */ +CORD CORD_substr_closure(CORD x, size_t i, size_t n, CORD_fn f) +{ + register struct substr_args * sa = GC_NEW(struct substr_args); + CORD result; + + if (sa == 0) OUT_OF_MEMORY; + sa->sa_cord = (CordRep *)x; + sa->sa_index = i; + result = CORD_from_fn(f, (void *)sa, n); + ((CordRep *)result) -> function.header = SUBSTR_HDR; + return (result); +} + +# define SUBSTR_LIMIT (10 * SHORT_LIMIT) + /* Substrings of function nodes and flat strings shorter than */ + /* this are flat strings. Othewise we use a functional */ + /* representation, which is significantly slower to access. */ + +/* A version of CORD_substr that assumes i >= 0, n > 0, and i + n < length(x).*/ +CORD CORD_substr_checked(CORD x, size_t i, size_t n) +{ + if (CORD_IS_STRING(x)) { + if (n > SUBSTR_LIMIT) { + return(CORD_substr_closure(x, i, n, CORD_index_access_fn)); + } else { + register char * result = GC_MALLOC_ATOMIC(n+1); + + if (result == 0) OUT_OF_MEMORY; + strncpy(result, x+i, n); + result[n] = '\0'; + return(result); + } + } else if (IS_CONCATENATION(x)) { + register struct Concatenation * conc + = &(((CordRep *)x) -> concatenation); + register size_t left_len; + register size_t right_len; + + left_len = LEFT_LEN(conc); + right_len = conc -> len - left_len; + if (i >= left_len) { + if (n == right_len) return(conc -> right); + return(CORD_substr_checked(conc -> right, i - left_len, n)); + } else if (i+n <= left_len) { + if (n == left_len) return(conc -> left); + return(CORD_substr_checked(conc -> left, i, n)); + } else { + /* Need at least one character from each side. */ + register CORD left_part; + register CORD right_part; + register size_t left_part_len = left_len - i; + + if (i == 0) { + left_part = conc -> left; + } else { + left_part = CORD_substr_checked(conc -> left, i, left_part_len); + } + if (i + n == right_len + left_len) { + right_part = conc -> right; + } else { + right_part = CORD_substr_checked(conc -> right, 0, + n - left_part_len); + } + return(CORD_cat(left_part, right_part)); + } + } else /* function */ { + if (n > SUBSTR_LIMIT) { + if (IS_SUBSTR(x)) { + /* Avoid nesting substring nodes. */ + register struct Function * f = &(((CordRep *)x) -> function); + register struct substr_args *descr = + (struct substr_args *)(f -> client_data); + + return(CORD_substr_closure((CORD)descr->sa_cord, + i + descr->sa_index, + n, f -> fn)); + } else { + return(CORD_substr_closure(x, i, n, CORD_apply_access_fn)); + } + } else { + char * result; + register struct Function * f = &(((CordRep *)x) -> function); + char buf[SUBSTR_LIMIT+1]; + register char * p = buf; + register char c; + register int j; + register int lim = i + n; + + for (j = i; j < lim; j++) { + c = (*(f -> fn))(j, f -> client_data); + if (c == '\0') { + return(CORD_substr_closure(x, i, n, CORD_apply_access_fn)); + } + *p++ = c; + } + *p = '\0'; + result = GC_MALLOC_ATOMIC(n+1); + if (result == 0) OUT_OF_MEMORY; + strcpy(result, buf); + return(result); + } + } +} + +CORD CORD_substr(CORD x, size_t i, size_t n) +{ + register size_t len = CORD_len(x); + + if (i >= len || n <= 0) return(0); + /* n < 0 is impossible in a correct C implementation, but */ + /* quite possible under SunOS 4.X. */ + if (i + n > len) n = len - i; +# ifndef __STDC__ + if (i < 0) ABORT("CORD_substr: second arg. negative"); + /* Possible only if both client and C implementation are buggy. */ + /* But empirically this happens frequently. */ +# endif + return(CORD_substr_checked(x, i, n)); +} + +/* See cord.h for definition. We assume i is in range. */ +int CORD_iter5(CORD x, size_t i, CORD_iter_fn f1, + CORD_batched_iter_fn f2, void * client_data) +{ + if (x == 0) return(0); + if (CORD_IS_STRING(x)) { + register const char *p = x+i; + + if (*p == '\0') ABORT("2nd arg to CORD_iter5 too big"); + if (f2 != CORD_NO_FN) { + return((*f2)(p, client_data)); + } else { + while (*p) { + if ((*f1)(*p, client_data)) return(1); + p++; + } + return(0); + } + } else if (IS_CONCATENATION(x)) { + register struct Concatenation * conc + = &(((CordRep *)x) -> concatenation); + + + if (i > 0) { + register size_t left_len = LEFT_LEN(conc); + + if (i >= left_len) { + return(CORD_iter5(conc -> right, i - left_len, f1, f2, + client_data)); + } + } + if (CORD_iter5(conc -> left, i, f1, f2, client_data)) { + return(1); + } + return(CORD_iter5(conc -> right, 0, f1, f2, client_data)); + } else /* function */ { + register struct Function * f = &(((CordRep *)x) -> function); + register size_t j; + register size_t lim = f -> len; + + for (j = i; j < lim; j++) { + if ((*f1)((*(f -> fn))(j, f -> client_data), client_data)) { + return(1); + } + } + return(0); + } +} + +#undef CORD_iter +int CORD_iter(CORD x, CORD_iter_fn f1, void * client_data) +{ + return(CORD_iter5(x, 0, f1, CORD_NO_FN, client_data)); +} + +int CORD_riter4(CORD x, size_t i, CORD_iter_fn f1, void * client_data) +{ + if (x == 0) return(0); + if (CORD_IS_STRING(x)) { + register const char *p = x + i; + register char c; + + for(;;) { + c = *p; + if (c == '\0') ABORT("2nd arg to CORD_riter4 too big"); + if ((*f1)(c, client_data)) return(1); + if (p == x) break; + p--; + } + return(0); + } else if (IS_CONCATENATION(x)) { + register struct Concatenation * conc + = &(((CordRep *)x) -> concatenation); + register CORD left_part = conc -> left; + register size_t left_len; + + left_len = LEFT_LEN(conc); + if (i >= left_len) { + if (CORD_riter4(conc -> right, i - left_len, f1, client_data)) { + return(1); + } + return(CORD_riter4(left_part, left_len - 1, f1, client_data)); + } else { + return(CORD_riter4(left_part, i, f1, client_data)); + } + } else /* function */ { + register struct Function * f = &(((CordRep *)x) -> function); + register size_t j; + + for (j = i; ; j--) { + if ((*f1)((*(f -> fn))(j, f -> client_data), client_data)) { + return(1); + } + if (j == 0) return(0); + } + } +} + +int CORD_riter(CORD x, CORD_iter_fn f1, void * client_data) +{ + return(CORD_riter4(x, CORD_len(x) - 1, f1, client_data)); +} + +/* + * The following functions are concerned with balancing cords. + * Strategy: + * Scan the cord from left to right, keeping the cord scanned so far + * as a forest of balanced trees of exponentialy decreasing length. + * When a new subtree needs to be added to the forest, we concatenate all + * shorter ones to the new tree in the appropriate order, and then insert + * the result into the forest. + * Crucial invariants: + * 1. The concatenation of the forest (in decreasing order) with the + * unscanned part of the rope is equal to the rope being balanced. + * 2. All trees in the forest are balanced. + * 3. forest[i] has depth at most i. + */ + +typedef struct { + CORD c; + size_t len; /* Actual length of c */ +} ForestElement; + +static size_t min_len [ MAX_DEPTH ]; + +static int min_len_init = 0; + +int CORD_max_len; + +typedef ForestElement Forest [ MAX_DEPTH ]; + /* forest[i].len >= fib(i+1) */ + /* The string is the concatenation */ + /* of the forest in order of DECREASING */ + /* indices. */ + +void CORD_init_min_len() +{ + register int i; + register size_t last, previous, current; + + min_len[0] = previous = 1; + min_len[1] = last = 2; + for (i = 2; i < MAX_DEPTH; i++) { + current = last + previous; + if (current < last) /* overflow */ current = last; + min_len[i] = current; + previous = last; + last = current; + } + CORD_max_len = last - 1; + min_len_init = 1; +} + + +void CORD_init_forest(ForestElement * forest, size_t max_len) +{ + register int i; + + for (i = 0; i < MAX_DEPTH; i++) { + forest[i].c = 0; + if (min_len[i] > max_len) return; + } + ABORT("Cord too long"); +} + +/* Add a leaf to the appropriate level in the forest, cleaning */ +/* out lower levels as necessary. */ +/* Also works if x is a balanced tree of concatenations; however */ +/* in this case an extra concatenation node may be inserted above x; */ +/* This node should not be counted in the statement of the invariants. */ +void CORD_add_forest(ForestElement * forest, CORD x, size_t len) +{ + register int i = 0; + register CORD sum = CORD_EMPTY; + register size_t sum_len = 0; + + while (len > min_len[i + 1]) { + if (forest[i].c != 0) { + sum = CORD_cat(forest[i].c, sum); + sum_len += forest[i].len; + forest[i].c = 0; + } + i++; + } + /* Sum has depth at most 1 greter than what would be required */ + /* for balance. */ + sum = CORD_cat(sum, x); + sum_len += len; + /* If x was a leaf, then sum is now balanced. To see this */ + /* consider the two cases in which forest[i-1] either is or is */ + /* not empty. */ + while (sum_len >= min_len[i]) { + if (forest[i].c != 0) { + sum = CORD_cat(forest[i].c, sum); + sum_len += forest[i].len; + /* This is again balanced, since sum was balanced, and has */ + /* allowable depth that differs from i by at most 1. */ + forest[i].c = 0; + } + i++; + } + i--; + forest[i].c = sum; + forest[i].len = sum_len; +} + +CORD CORD_concat_forest(ForestElement * forest, size_t expected_len) +{ + register int i = 0; + CORD sum = 0; + size_t sum_len = 0; + + while (sum_len != expected_len) { + if (forest[i].c != 0) { + sum = CORD_cat(forest[i].c, sum); + sum_len += forest[i].len; + } + i++; + } + return(sum); +} + +/* Insert the frontier of x into forest. Balanced subtrees are */ +/* treated as leaves. This potentially adds one to the depth */ +/* of the final tree. */ +void CORD_balance_insert(CORD x, size_t len, ForestElement * forest) +{ + register int depth; + + if (CORD_IS_STRING(x)) { + CORD_add_forest(forest, x, len); + } else if (IS_CONCATENATION(x) + && ((depth = DEPTH(x)) >= MAX_DEPTH + || len < min_len[depth])) { + register struct Concatenation * conc + = &(((CordRep *)x) -> concatenation); + size_t left_len = LEFT_LEN(conc); + + CORD_balance_insert(conc -> left, left_len, forest); + CORD_balance_insert(conc -> right, len - left_len, forest); + } else /* function or balanced */ { + CORD_add_forest(forest, x, len); + } +} + + +CORD CORD_balance(CORD x) +{ + Forest forest; + register size_t len; + + if (x == 0) return(0); + if (CORD_IS_STRING(x)) return(x); + if (!min_len_init) CORD_init_min_len(); + len = LEN(x); + CORD_init_forest(forest, len); + CORD_balance_insert(x, len, forest); + return(CORD_concat_forest(forest, len)); +} + + +/* Position primitives */ + +/* Private routines to deal with the hard cases only: */ + +/* P contains a prefix of the path to cur_pos. Extend it to a full */ +/* path and set up leaf info. */ +/* Return 0 if past the end of cord, 1 o.w. */ +void CORD__extend_path(register CORD_pos p) +{ + register struct CORD_pe * current_pe = &(p[0].path[p[0].path_len]); + register CORD top = current_pe -> pe_cord; + register size_t pos = p[0].cur_pos; + register size_t top_pos = current_pe -> pe_start_pos; + register size_t top_len = GEN_LEN(top); + + /* Fill in the rest of the path. */ + while(!CORD_IS_STRING(top) && IS_CONCATENATION(top)) { + register struct Concatenation * conc = + &(((CordRep *)top) -> concatenation); + register size_t left_len; + + left_len = LEFT_LEN(conc); + current_pe++; + if (pos >= top_pos + left_len) { + current_pe -> pe_cord = top = conc -> right; + current_pe -> pe_start_pos = top_pos = top_pos + left_len; + top_len -= left_len; + } else { + current_pe -> pe_cord = top = conc -> left; + current_pe -> pe_start_pos = top_pos; + top_len = left_len; + } + p[0].path_len++; + } + /* Fill in leaf description for fast access. */ + if (CORD_IS_STRING(top)) { + p[0].cur_leaf = top; + p[0].cur_start = top_pos; + p[0].cur_end = top_pos + top_len; + } else { + p[0].cur_end = 0; + } + if (pos >= top_pos + top_len) p[0].path_len = CORD_POS_INVALID; +} + +char CORD__pos_fetch(register CORD_pos p) +{ + /* Leaf is a function node */ + struct CORD_pe * pe = &((p)[0].path[(p)[0].path_len]); + CORD leaf = pe -> pe_cord; + register struct Function * f = &(((CordRep *)leaf) -> function); + + if (!IS_FUNCTION(leaf)) ABORT("CORD_pos_fetch: bad leaf"); + return ((*(f -> fn))(p[0].cur_pos - pe -> pe_start_pos, f -> client_data)); +} + +void CORD__next(register CORD_pos p) +{ + register size_t cur_pos = p[0].cur_pos + 1; + register struct CORD_pe * current_pe = &((p)[0].path[(p)[0].path_len]); + register CORD leaf = current_pe -> pe_cord; + + /* Leaf is not a string or we're at end of leaf */ + p[0].cur_pos = cur_pos; + if (!CORD_IS_STRING(leaf)) { + /* Function leaf */ + register struct Function * f = &(((CordRep *)leaf) -> function); + register size_t start_pos = current_pe -> pe_start_pos; + register size_t end_pos = start_pos + f -> len; + + if (cur_pos < end_pos) { + /* Fill cache and return. */ + register size_t i; + register size_t limit = cur_pos + FUNCTION_BUF_SZ; + register CORD_fn fn = f -> fn; + register void * client_data = f -> client_data; + + if (limit > end_pos) { + limit = end_pos; + } + for (i = cur_pos; i < limit; i++) { + p[0].function_buf[i - cur_pos] = + (*fn)(i - start_pos, client_data); + } + p[0].cur_start = cur_pos; + p[0].cur_leaf = p[0].function_buf; + p[0].cur_end = limit; + return; + } + } + /* End of leaf */ + /* Pop the stack until we find two concatenation nodes with the */ + /* same start position: this implies we were in left part. */ + { + while (p[0].path_len > 0 + && current_pe[0].pe_start_pos != current_pe[-1].pe_start_pos) { + p[0].path_len--; + current_pe--; + } + if (p[0].path_len == 0) { + p[0].path_len = CORD_POS_INVALID; + return; + } + } + p[0].path_len--; + CORD__extend_path(p); +} + +void CORD__prev(register CORD_pos p) +{ + register struct CORD_pe * pe = &(p[0].path[p[0].path_len]); + + if (p[0].cur_pos == 0) { + p[0].path_len = CORD_POS_INVALID; + return; + } + p[0].cur_pos--; + if (p[0].cur_pos >= pe -> pe_start_pos) return; + + /* Beginning of leaf */ + + /* Pop the stack until we find two concatenation nodes with the */ + /* different start position: this implies we were in right part. */ + { + register struct CORD_pe * current_pe = &((p)[0].path[(p)[0].path_len]); + + while (p[0].path_len > 0 + && current_pe[0].pe_start_pos == current_pe[-1].pe_start_pos) { + p[0].path_len--; + current_pe--; + } + } + p[0].path_len--; + CORD__extend_path(p); +} + +#undef CORD_pos_fetch +#undef CORD_next +#undef CORD_prev +#undef CORD_pos_to_index +#undef CORD_pos_to_cord +#undef CORD_pos_valid + +char CORD_pos_fetch(register CORD_pos p) +{ + if (p[0].cur_start <= p[0].cur_pos && p[0].cur_pos < p[0].cur_end) { + return(p[0].cur_leaf[p[0].cur_pos - p[0].cur_start]); + } else { + return(CORD__pos_fetch(p)); + } +} + +void CORD_next(CORD_pos p) +{ + if (p[0].cur_pos < p[0].cur_end - 1) { + p[0].cur_pos++; + } else { + CORD__next(p); + } +} + +void CORD_prev(CORD_pos p) +{ + if (p[0].cur_end != 0 && p[0].cur_pos > p[0].cur_start) { + p[0].cur_pos--; + } else { + CORD__prev(p); + } +} + +size_t CORD_pos_to_index(CORD_pos p) +{ + return(p[0].cur_pos); +} + +CORD CORD_pos_to_cord(CORD_pos p) +{ + return(p[0].path[0].pe_cord); +} + +int CORD_pos_valid(CORD_pos p) +{ + return(p[0].path_len != CORD_POS_INVALID); +} + +void CORD_set_pos(CORD_pos p, CORD x, size_t i) +{ + if (x == CORD_EMPTY) { + p[0].path_len = CORD_POS_INVALID; + return; + } + p[0].path[0].pe_cord = x; + p[0].path[0].pe_start_pos = 0; + p[0].path_len = 0; + p[0].cur_pos = i; + CORD__extend_path(p); +} |