aboutsummaryrefslogtreecommitdiffstats
path: root/gc/os_dep.c
diff options
context:
space:
mode:
Diffstat (limited to 'gc/os_dep.c')
-rw-r--r--gc/os_dep.c2461
1 files changed, 2461 insertions, 0 deletions
diff --git a/gc/os_dep.c b/gc/os_dep.c
new file mode 100644
index 0000000..0236248
--- /dev/null
+++ b/gc/os_dep.c
@@ -0,0 +1,2461 @@
+/*
+ * Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.
+ * Copyright (c) 1996-1997 by Silicon Graphics. All rights reserved.
+ *
+ * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
+ * OR IMPLIED. ANY USE IS AT YOUR OWN RISK.
+ *
+ * Permission is hereby granted to use or copy this program
+ * for any purpose, provided the above notices are retained on all copies.
+ * Permission to modify the code and to distribute modified code is granted,
+ * provided the above notices are retained, and a notice that the code was
+ * modified is included with the above copyright notice.
+ */
+
+# include "gc_priv.h"
+
+# if defined(LINUX) && !defined(POWERPC)
+# include <linux/version.h>
+# if (LINUX_VERSION_CODE <= 0x10400)
+ /* Ugly hack to get struct sigcontext_struct definition. Required */
+ /* for some early 1.3.X releases. Will hopefully go away soon. */
+ /* in some later Linux releases, asm/sigcontext.h may have to */
+ /* be included instead. */
+# define __KERNEL__
+# include <asm/signal.h>
+# undef __KERNEL__
+# else
+ /* Kernels prior to 2.1.1 defined struct sigcontext_struct instead of */
+ /* struct sigcontext. libc6 (glibc2) uses "struct sigcontext" in */
+ /* prototypes, so we have to include the top-level sigcontext.h to */
+ /* make sure the former gets defined to be the latter if appropriate. */
+# include <features.h>
+# if 2 <= __GLIBC__
+# if 0 == __GLIBC_MINOR__
+ /* glibc 2.1 no longer has sigcontext.h. But signal.h */
+ /* has the right declaration for glibc 2.1. */
+# include <sigcontext.h>
+# endif /* 0 == __GLIBC_MINOR__ */
+# else /* not 2 <= __GLIBC__ */
+ /* libc5 doesn't have <sigcontext.h>: go directly with the kernel */
+ /* one. Check LINUX_VERSION_CODE to see which we should reference. */
+# include <asm/sigcontext.h>
+# endif /* 2 <= __GLIBC__ */
+# endif
+# endif
+# if !defined(OS2) && !defined(PCR) && !defined(AMIGA) && !defined(MACOS)
+# include <sys/types.h>
+# if !defined(MSWIN32) && !defined(SUNOS4)
+# include <unistd.h>
+# endif
+# endif
+
+# include <stdio.h>
+# include <signal.h>
+
+/* Blatantly OS dependent routines, except for those that are related */
+/* dynamic loading. */
+
+# if !defined(THREADS) && !defined(STACKBOTTOM) && defined(HEURISTIC2)
+# define NEED_FIND_LIMIT
+# endif
+
+# if defined(IRIX_THREADS)
+# define NEED_FIND_LIMIT
+# endif
+
+# if (defined(SUNOS4) & defined(DYNAMIC_LOADING)) && !defined(PCR)
+# define NEED_FIND_LIMIT
+# endif
+
+# if (defined(SVR4) || defined(AUX) || defined(DGUX)) && !defined(PCR)
+# define NEED_FIND_LIMIT
+# endif
+
+# if defined(LINUX) && (defined(POWERPC) || defined(SPARC) || \
+ defined(ALPHA) || defined(MIPS))
+# define NEED_FIND_LIMIT
+# endif
+
+#ifdef NEED_FIND_LIMIT
+# include <setjmp.h>
+#endif
+
+#ifdef FREEBSD
+# include <machine/trap.h>
+#endif
+
+#ifdef AMIGA
+# include <proto/exec.h>
+# include <proto/dos.h>
+# include <dos/dosextens.h>
+# include <workbench/startup.h>
+#endif
+
+#ifdef MSWIN32
+# define WIN32_LEAN_AND_MEAN
+# define NOSERVICE
+# include <windows.h>
+#endif
+
+#ifdef MACOS
+# include <Processes.h>
+#endif
+
+#ifdef IRIX5
+# include <sys/uio.h>
+# include <malloc.h> /* for locking */
+#endif
+#ifdef USE_MMAP
+# include <sys/types.h>
+# include <sys/mman.h>
+# include <sys/stat.h>
+# include <fcntl.h>
+#endif
+
+#ifdef SUNOS5SIGS
+# include <sys/siginfo.h>
+# undef setjmp
+# undef longjmp
+# define setjmp(env) sigsetjmp(env, 1)
+# define longjmp(env, val) siglongjmp(env, val)
+# define jmp_buf sigjmp_buf
+#endif
+
+#ifdef DJGPP
+ /* Apparently necessary for djgpp 2.01. May casuse problems with */
+ /* other versions. */
+ typedef long unsigned int caddr_t;
+#endif
+
+#ifdef PCR
+# include "il/PCR_IL.h"
+# include "th/PCR_ThCtl.h"
+# include "mm/PCR_MM.h"
+#endif
+
+#if !defined(NO_EXECUTE_PERMISSION)
+# define OPT_PROT_EXEC PROT_EXEC
+#else
+# define OPT_PROT_EXEC 0
+#endif
+
+#if defined(LINUX) && (defined(POWERPC) || defined(SPARC) || \
+ defined(ALPHA) || defined(MIPS))
+ /* The I386 case can be handled without a search. The Alpha case */
+ /* used to be handled differently as well, but the rules changed */
+ /* for recent Linux versions. This seems to be the easiest way to */
+ /* cover all versions. */
+ ptr_t GC_data_start;
+
+ extern char * GC_copyright[]; /* Any data symbol would do. */
+
+ void GC_init_linux_data_start()
+ {
+ extern ptr_t GC_find_limit();
+
+ GC_data_start = GC_find_limit((ptr_t)GC_copyright, FALSE);
+ }
+#endif
+
+# ifdef OS2
+
+# include <stddef.h>
+
+# if !defined(__IBMC__) && !defined(__WATCOMC__) /* e.g. EMX */
+
+struct exe_hdr {
+ unsigned short magic_number;
+ unsigned short padding[29];
+ long new_exe_offset;
+};
+
+#define E_MAGIC(x) (x).magic_number
+#define EMAGIC 0x5A4D
+#define E_LFANEW(x) (x).new_exe_offset
+
+struct e32_exe {
+ unsigned char magic_number[2];
+ unsigned char byte_order;
+ unsigned char word_order;
+ unsigned long exe_format_level;
+ unsigned short cpu;
+ unsigned short os;
+ unsigned long padding1[13];
+ unsigned long object_table_offset;
+ unsigned long object_count;
+ unsigned long padding2[31];
+};
+
+#define E32_MAGIC1(x) (x).magic_number[0]
+#define E32MAGIC1 'L'
+#define E32_MAGIC2(x) (x).magic_number[1]
+#define E32MAGIC2 'X'
+#define E32_BORDER(x) (x).byte_order
+#define E32LEBO 0
+#define E32_WORDER(x) (x).word_order
+#define E32LEWO 0
+#define E32_CPU(x) (x).cpu
+#define E32CPU286 1
+#define E32_OBJTAB(x) (x).object_table_offset
+#define E32_OBJCNT(x) (x).object_count
+
+struct o32_obj {
+ unsigned long size;
+ unsigned long base;
+ unsigned long flags;
+ unsigned long pagemap;
+ unsigned long mapsize;
+ unsigned long reserved;
+};
+
+#define O32_FLAGS(x) (x).flags
+#define OBJREAD 0x0001L
+#define OBJWRITE 0x0002L
+#define OBJINVALID 0x0080L
+#define O32_SIZE(x) (x).size
+#define O32_BASE(x) (x).base
+
+# else /* IBM's compiler */
+
+/* A kludge to get around what appears to be a header file bug */
+# ifndef WORD
+# define WORD unsigned short
+# endif
+# ifndef DWORD
+# define DWORD unsigned long
+# endif
+
+# define EXE386 1
+# include <newexe.h>
+# include <exe386.h>
+
+# endif /* __IBMC__ */
+
+# define INCL_DOSEXCEPTIONS
+# define INCL_DOSPROCESS
+# define INCL_DOSERRORS
+# define INCL_DOSMODULEMGR
+# define INCL_DOSMEMMGR
+# include <os2.h>
+
+
+/* Disable and enable signals during nontrivial allocations */
+
+void GC_disable_signals(void)
+{
+ ULONG nest;
+
+ DosEnterMustComplete(&nest);
+ if (nest != 1) ABORT("nested GC_disable_signals");
+}
+
+void GC_enable_signals(void)
+{
+ ULONG nest;
+
+ DosExitMustComplete(&nest);
+ if (nest != 0) ABORT("GC_enable_signals");
+}
+
+
+# else
+
+# if !defined(PCR) && !defined(AMIGA) && !defined(MSWIN32) \
+ && !defined(MACOS) && !defined(DJGPP) && !defined(DOS4GW)
+
+# if defined(sigmask) && !defined(UTS4)
+ /* Use the traditional BSD interface */
+# define SIGSET_T int
+# define SIG_DEL(set, signal) (set) &= ~(sigmask(signal))
+# define SIG_FILL(set) (set) = 0x7fffffff
+ /* Setting the leading bit appears to provoke a bug in some */
+ /* longjmp implementations. Most systems appear not to have */
+ /* a signal 32. */
+# define SIGSETMASK(old, new) (old) = sigsetmask(new)
+# else
+ /* Use POSIX/SYSV interface */
+# define SIGSET_T sigset_t
+# define SIG_DEL(set, signal) sigdelset(&(set), (signal))
+# define SIG_FILL(set) sigfillset(&set)
+# define SIGSETMASK(old, new) sigprocmask(SIG_SETMASK, &(new), &(old))
+# endif
+
+static GC_bool mask_initialized = FALSE;
+
+static SIGSET_T new_mask;
+
+static SIGSET_T old_mask;
+
+static SIGSET_T dummy;
+
+#if defined(PRINTSTATS) && !defined(THREADS)
+# define CHECK_SIGNALS
+ int GC_sig_disabled = 0;
+#endif
+
+void GC_disable_signals()
+{
+ if (!mask_initialized) {
+ SIG_FILL(new_mask);
+
+ SIG_DEL(new_mask, SIGSEGV);
+ SIG_DEL(new_mask, SIGILL);
+ SIG_DEL(new_mask, SIGQUIT);
+# ifdef SIGBUS
+ SIG_DEL(new_mask, SIGBUS);
+# endif
+# ifdef SIGIOT
+ SIG_DEL(new_mask, SIGIOT);
+# endif
+# ifdef SIGEMT
+ SIG_DEL(new_mask, SIGEMT);
+# endif
+# ifdef SIGTRAP
+ SIG_DEL(new_mask, SIGTRAP);
+# endif
+ mask_initialized = TRUE;
+ }
+# ifdef CHECK_SIGNALS
+ if (GC_sig_disabled != 0) ABORT("Nested disables");
+ GC_sig_disabled++;
+# endif
+ SIGSETMASK(old_mask,new_mask);
+}
+
+void GC_enable_signals()
+{
+# ifdef CHECK_SIGNALS
+ if (GC_sig_disabled != 1) ABORT("Unmatched enable");
+ GC_sig_disabled--;
+# endif
+ SIGSETMASK(dummy,old_mask);
+}
+
+# endif /* !PCR */
+
+# endif /*!OS/2 */
+
+/* Ivan Demakov: simplest way (to me) */
+#ifdef DOS4GW
+ void GC_disable_signals() { }
+ void GC_enable_signals() { }
+#endif
+
+/* Find the page size */
+word GC_page_size;
+
+# ifdef MSWIN32
+ void GC_setpagesize()
+ {
+ SYSTEM_INFO sysinfo;
+
+ GetSystemInfo(&sysinfo);
+ GC_page_size = sysinfo.dwPageSize;
+ }
+
+# else
+# if defined(MPROTECT_VDB) || defined(PROC_VDB) || defined(USE_MMAP) \
+ || defined(USE_MUNMAP)
+ void GC_setpagesize()
+ {
+ GC_page_size = GETPAGESIZE();
+ }
+# else
+ /* It's acceptable to fake it. */
+ void GC_setpagesize()
+ {
+ GC_page_size = HBLKSIZE;
+ }
+# endif
+# endif
+
+/*
+ * Find the base of the stack.
+ * Used only in single-threaded environment.
+ * With threads, GC_mark_roots needs to know how to do this.
+ * Called with allocator lock held.
+ */
+# ifdef MSWIN32
+# define is_writable(prot) ((prot) == PAGE_READWRITE \
+ || (prot) == PAGE_WRITECOPY \
+ || (prot) == PAGE_EXECUTE_READWRITE \
+ || (prot) == PAGE_EXECUTE_WRITECOPY)
+/* Return the number of bytes that are writable starting at p. */
+/* The pointer p is assumed to be page aligned. */
+/* If base is not 0, *base becomes the beginning of the */
+/* allocation region containing p. */
+word GC_get_writable_length(ptr_t p, ptr_t *base)
+{
+ MEMORY_BASIC_INFORMATION buf;
+ word result;
+ word protect;
+
+ result = VirtualQuery(p, &buf, sizeof(buf));
+ if (result != sizeof(buf)) ABORT("Weird VirtualQuery result");
+ if (base != 0) *base = (ptr_t)(buf.AllocationBase);
+ protect = (buf.Protect & ~(PAGE_GUARD | PAGE_NOCACHE));
+ if (!is_writable(protect)) {
+ return(0);
+ }
+ if (buf.State != MEM_COMMIT) return(0);
+ return(buf.RegionSize);
+}
+
+ptr_t GC_get_stack_base()
+{
+ int dummy;
+ ptr_t sp = (ptr_t)(&dummy);
+ ptr_t trunc_sp = (ptr_t)((word)sp & ~(GC_page_size - 1));
+ word size = GC_get_writable_length(trunc_sp, 0);
+
+ return(trunc_sp + size);
+}
+
+
+# else
+
+# ifdef OS2
+
+ptr_t GC_get_stack_base()
+{
+ PTIB ptib;
+ PPIB ppib;
+
+ if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
+ GC_err_printf0("DosGetInfoBlocks failed\n");
+ ABORT("DosGetInfoBlocks failed\n");
+ }
+ return((ptr_t)(ptib -> tib_pstacklimit));
+}
+
+# else
+
+# ifdef AMIGA
+
+ptr_t GC_get_stack_base()
+{
+ struct Process *proc = (struct Process*)SysBase->ThisTask;
+
+ /* Reference: Amiga Guru Book Pages: 42,567,574 */
+ if (proc->pr_Task.tc_Node.ln_Type==NT_PROCESS
+ && proc->pr_CLI != NULL) {
+ /* first ULONG is StackSize */
+ /*longPtr = proc->pr_ReturnAddr;
+ size = longPtr[0];*/
+
+ return (char *)proc->pr_ReturnAddr + sizeof(ULONG);
+ } else {
+ return (char *)proc->pr_Task.tc_SPUpper;
+ }
+}
+
+#if 0 /* old version */
+ptr_t GC_get_stack_base()
+{
+ extern struct WBStartup *_WBenchMsg;
+ extern long __base;
+ extern long __stack;
+ struct Task *task;
+ struct Process *proc;
+ struct CommandLineInterface *cli;
+ long size;
+
+ if ((task = FindTask(0)) == 0) {
+ GC_err_puts("Cannot find own task structure\n");
+ ABORT("task missing");
+ }
+ proc = (struct Process *)task;
+ cli = BADDR(proc->pr_CLI);
+
+ if (_WBenchMsg != 0 || cli == 0) {
+ size = (char *)task->tc_SPUpper - (char *)task->tc_SPLower;
+ } else {
+ size = cli->cli_DefaultStack * 4;
+ }
+ return (ptr_t)(__base + GC_max(size, __stack));
+}
+#endif /* 0 */
+
+# else /* !AMIGA, !OS2, ... */
+
+# ifdef NEED_FIND_LIMIT
+ /* Some tools to implement HEURISTIC2 */
+# define MIN_PAGE_SIZE 256 /* Smallest conceivable page size, bytes */
+ /* static */ jmp_buf GC_jmp_buf;
+
+ /*ARGSUSED*/
+ void GC_fault_handler(sig)
+ int sig;
+ {
+ longjmp(GC_jmp_buf, 1);
+ }
+
+# ifdef __STDC__
+ typedef void (*handler)(int);
+# else
+ typedef void (*handler)();
+# endif
+
+# if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1)
+ static struct sigaction old_segv_act;
+# if defined(_sigargs) /* !Irix6.x */
+ static struct sigaction old_bus_act;
+# endif
+# else
+ static handler old_segv_handler, old_bus_handler;
+# endif
+
+ void GC_setup_temporary_fault_handler()
+ {
+# if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1)
+ struct sigaction act;
+
+ act.sa_handler = GC_fault_handler;
+ act.sa_flags = SA_RESTART | SA_NODEFER;
+ /* The presence of SA_NODEFER represents yet another gross */
+ /* hack. Under Solaris 2.3, siglongjmp doesn't appear to */
+ /* interact correctly with -lthread. We hide the confusion */
+ /* by making sure that signal handling doesn't affect the */
+ /* signal mask. */
+
+ (void) sigemptyset(&act.sa_mask);
+# ifdef IRIX_THREADS
+ /* Older versions have a bug related to retrieving and */
+ /* and setting a handler at the same time. */
+ (void) sigaction(SIGSEGV, 0, &old_segv_act);
+ (void) sigaction(SIGSEGV, &act, 0);
+# else
+ (void) sigaction(SIGSEGV, &act, &old_segv_act);
+# ifdef _sigargs /* Irix 5.x, not 6.x */
+ /* Under 5.x, we may get SIGBUS. */
+ /* Pthreads doesn't exist under 5.x, so we don't */
+ /* have to worry in the threads case. */
+ (void) sigaction(SIGBUS, &act, &old_bus_act);
+# endif
+# endif /* IRIX_THREADS */
+# else
+ old_segv_handler = signal(SIGSEGV, GC_fault_handler);
+# ifdef SIGBUS
+ old_bus_handler = signal(SIGBUS, GC_fault_handler);
+# endif
+# endif
+ }
+
+ void GC_reset_fault_handler()
+ {
+# if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1)
+ (void) sigaction(SIGSEGV, &old_segv_act, 0);
+# ifdef _sigargs /* Irix 5.x, not 6.x */
+ (void) sigaction(SIGBUS, &old_bus_act, 0);
+# endif
+# else
+ (void) signal(SIGSEGV, old_segv_handler);
+# ifdef SIGBUS
+ (void) signal(SIGBUS, old_bus_handler);
+# endif
+# endif
+ }
+
+ /* Return the first nonaddressible location > p (up) or */
+ /* the smallest location q s.t. [q,p] is addressible (!up). */
+ ptr_t GC_find_limit(p, up)
+ ptr_t p;
+ GC_bool up;
+ {
+ static VOLATILE ptr_t result;
+ /* Needs to be static, since otherwise it may not be */
+ /* preserved across the longjmp. Can safely be */
+ /* static since it's only called once, with the */
+ /* allocation lock held. */
+
+
+ GC_setup_temporary_fault_handler();
+ if (setjmp(GC_jmp_buf) == 0) {
+ result = (ptr_t)(((word)(p))
+ & ~(MIN_PAGE_SIZE-1));
+ for (;;) {
+ if (up) {
+ result += MIN_PAGE_SIZE;
+ } else {
+ result -= MIN_PAGE_SIZE;
+ }
+ GC_noop1((word)(*result));
+ }
+ }
+ GC_reset_fault_handler();
+ if (!up) {
+ result += MIN_PAGE_SIZE;
+ }
+ return(result);
+ }
+# endif
+
+
+ptr_t GC_get_stack_base()
+{
+ word dummy;
+ ptr_t result;
+
+# define STACKBOTTOM_ALIGNMENT_M1 ((word)STACK_GRAN - 1)
+
+# ifdef STACKBOTTOM
+ return(STACKBOTTOM);
+# else
+# ifdef HEURISTIC1
+# ifdef STACK_GROWS_DOWN
+ result = (ptr_t)((((word)(&dummy))
+ + STACKBOTTOM_ALIGNMENT_M1)
+ & ~STACKBOTTOM_ALIGNMENT_M1);
+# else
+ result = (ptr_t)(((word)(&dummy))
+ & ~STACKBOTTOM_ALIGNMENT_M1);
+# endif
+# endif /* HEURISTIC1 */
+# ifdef HEURISTIC2
+# ifdef STACK_GROWS_DOWN
+ result = GC_find_limit((ptr_t)(&dummy), TRUE);
+# ifdef HEURISTIC2_LIMIT
+ if (result > HEURISTIC2_LIMIT
+ && (ptr_t)(&dummy) < HEURISTIC2_LIMIT) {
+ result = HEURISTIC2_LIMIT;
+ }
+# endif
+# else
+ result = GC_find_limit((ptr_t)(&dummy), FALSE);
+# ifdef HEURISTIC2_LIMIT
+ if (result < HEURISTIC2_LIMIT
+ && (ptr_t)(&dummy) > HEURISTIC2_LIMIT) {
+ result = HEURISTIC2_LIMIT;
+ }
+# endif
+# endif
+
+# endif /* HEURISTIC2 */
+# ifdef STACK_GROWS_DOWN
+ if (result == 0) result = (ptr_t)(signed_word)(-sizeof(ptr_t));
+# endif
+ return(result);
+# endif /* STACKBOTTOM */
+}
+
+# endif /* ! AMIGA */
+# endif /* ! OS2 */
+# endif /* ! MSWIN32 */
+
+/*
+ * Register static data segment(s) as roots.
+ * If more data segments are added later then they need to be registered
+ * add that point (as we do with SunOS dynamic loading),
+ * or GC_mark_roots needs to check for them (as we do with PCR).
+ * Called with allocator lock held.
+ */
+
+# ifdef OS2
+
+void GC_register_data_segments()
+{
+ PTIB ptib;
+ PPIB ppib;
+ HMODULE module_handle;
+# define PBUFSIZ 512
+ UCHAR path[PBUFSIZ];
+ FILE * myexefile;
+ struct exe_hdr hdrdos; /* MSDOS header. */
+ struct e32_exe hdr386; /* Real header for my executable */
+ struct o32_obj seg; /* Currrent segment */
+ int nsegs;
+
+
+ if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
+ GC_err_printf0("DosGetInfoBlocks failed\n");
+ ABORT("DosGetInfoBlocks failed\n");
+ }
+ module_handle = ppib -> pib_hmte;
+ if (DosQueryModuleName(module_handle, PBUFSIZ, path) != NO_ERROR) {
+ GC_err_printf0("DosQueryModuleName failed\n");
+ ABORT("DosGetInfoBlocks failed\n");
+ }
+ myexefile = fopen(path, "rb");
+ if (myexefile == 0) {
+ GC_err_puts("Couldn't open executable ");
+ GC_err_puts(path); GC_err_puts("\n");
+ ABORT("Failed to open executable\n");
+ }
+ if (fread((char *)(&hdrdos), 1, sizeof hdrdos, myexefile) < sizeof hdrdos) {
+ GC_err_puts("Couldn't read MSDOS header from ");
+ GC_err_puts(path); GC_err_puts("\n");
+ ABORT("Couldn't read MSDOS header");
+ }
+ if (E_MAGIC(hdrdos) != EMAGIC) {
+ GC_err_puts("Executable has wrong DOS magic number: ");
+ GC_err_puts(path); GC_err_puts("\n");
+ ABORT("Bad DOS magic number");
+ }
+ if (fseek(myexefile, E_LFANEW(hdrdos), SEEK_SET) != 0) {
+ GC_err_puts("Seek to new header failed in ");
+ GC_err_puts(path); GC_err_puts("\n");
+ ABORT("Bad DOS magic number");
+ }
+ if (fread((char *)(&hdr386), 1, sizeof hdr386, myexefile) < sizeof hdr386) {
+ GC_err_puts("Couldn't read MSDOS header from ");
+ GC_err_puts(path); GC_err_puts("\n");
+ ABORT("Couldn't read OS/2 header");
+ }
+ if (E32_MAGIC1(hdr386) != E32MAGIC1 || E32_MAGIC2(hdr386) != E32MAGIC2) {
+ GC_err_puts("Executable has wrong OS/2 magic number:");
+ GC_err_puts(path); GC_err_puts("\n");
+ ABORT("Bad OS/2 magic number");
+ }
+ if ( E32_BORDER(hdr386) != E32LEBO || E32_WORDER(hdr386) != E32LEWO) {
+ GC_err_puts("Executable %s has wrong byte order: ");
+ GC_err_puts(path); GC_err_puts("\n");
+ ABORT("Bad byte order");
+ }
+ if ( E32_CPU(hdr386) == E32CPU286) {
+ GC_err_puts("GC can't handle 80286 executables: ");
+ GC_err_puts(path); GC_err_puts("\n");
+ EXIT();
+ }
+ if (fseek(myexefile, E_LFANEW(hdrdos) + E32_OBJTAB(hdr386),
+ SEEK_SET) != 0) {
+ GC_err_puts("Seek to object table failed: ");
+ GC_err_puts(path); GC_err_puts("\n");
+ ABORT("Seek to object table failed");
+ }
+ for (nsegs = E32_OBJCNT(hdr386); nsegs > 0; nsegs--) {
+ int flags;
+ if (fread((char *)(&seg), 1, sizeof seg, myexefile) < sizeof seg) {
+ GC_err_puts("Couldn't read obj table entry from ");
+ GC_err_puts(path); GC_err_puts("\n");
+ ABORT("Couldn't read obj table entry");
+ }
+ flags = O32_FLAGS(seg);
+ if (!(flags & OBJWRITE)) continue;
+ if (!(flags & OBJREAD)) continue;
+ if (flags & OBJINVALID) {
+ GC_err_printf0("Object with invalid pages?\n");
+ continue;
+ }
+ GC_add_roots_inner(O32_BASE(seg), O32_BASE(seg)+O32_SIZE(seg), FALSE);
+ }
+}
+
+# else
+
+# ifdef MSWIN32
+ /* Unfortunately, we have to handle win32s very differently from NT, */
+ /* Since VirtualQuery has very different semantics. In particular, */
+ /* under win32s a VirtualQuery call on an unmapped page returns an */
+ /* invalid result. Under GC_register_data_segments is a noop and */
+ /* all real work is done by GC_register_dynamic_libraries. Under */
+ /* win32s, we cannot find the data segments associated with dll's. */
+ /* We rgister the main data segment here. */
+ GC_bool GC_win32s = FALSE; /* We're running under win32s. */
+
+ GC_bool GC_is_win32s()
+ {
+ DWORD v = GetVersion();
+
+ /* Check that this is not NT, and Windows major version <= 3 */
+ return ((v & 0x80000000) && (v & 0xff) <= 3);
+ }
+
+ void GC_init_win32()
+ {
+ GC_win32s = GC_is_win32s();
+ }
+
+ /* Return the smallest address a such that VirtualQuery */
+ /* returns correct results for all addresses between a and start. */
+ /* Assumes VirtualQuery returns correct information for start. */
+ ptr_t GC_least_described_address(ptr_t start)
+ {
+ MEMORY_BASIC_INFORMATION buf;
+ SYSTEM_INFO sysinfo;
+ DWORD result;
+ LPVOID limit;
+ ptr_t p;
+ LPVOID q;
+
+ GetSystemInfo(&sysinfo);
+ limit = sysinfo.lpMinimumApplicationAddress;
+ p = (ptr_t)((word)start & ~(GC_page_size - 1));
+ for (;;) {
+ q = (LPVOID)(p - GC_page_size);
+ if ((ptr_t)q > (ptr_t)p /* underflow */ || q < limit) break;
+ result = VirtualQuery(q, &buf, sizeof(buf));
+ if (result != sizeof(buf) || buf.AllocationBase == 0) break;
+ p = (ptr_t)(buf.AllocationBase);
+ }
+ return(p);
+ }
+
+ /* Is p the start of either the malloc heap, or of one of our */
+ /* heap sections? */
+ GC_bool GC_is_heap_base (ptr_t p)
+ {
+
+ register unsigned i;
+
+# ifndef REDIRECT_MALLOC
+ static ptr_t malloc_heap_pointer = 0;
+
+ if (0 == malloc_heap_pointer) {
+ MEMORY_BASIC_INFORMATION buf;
+ register DWORD result = VirtualQuery(malloc(1), &buf, sizeof(buf));
+
+ if (result != sizeof(buf)) {
+ ABORT("Weird VirtualQuery result");
+ }
+ malloc_heap_pointer = (ptr_t)(buf.AllocationBase);
+ }
+ if (p == malloc_heap_pointer) return(TRUE);
+# endif
+ for (i = 0; i < GC_n_heap_bases; i++) {
+ if (GC_heap_bases[i] == p) return(TRUE);
+ }
+ return(FALSE);
+ }
+
+ void GC_register_root_section(ptr_t static_root)
+ {
+ MEMORY_BASIC_INFORMATION buf;
+ SYSTEM_INFO sysinfo;
+ DWORD result;
+ DWORD protect;
+ LPVOID p;
+ char * base;
+ char * limit, * new_limit;
+
+ if (!GC_win32s) return;
+ p = base = limit = GC_least_described_address(static_root);
+ GetSystemInfo(&sysinfo);
+ while (p < sysinfo.lpMaximumApplicationAddress) {
+ result = VirtualQuery(p, &buf, sizeof(buf));
+ if (result != sizeof(buf) || buf.AllocationBase == 0
+ || GC_is_heap_base(buf.AllocationBase)) break;
+ new_limit = (char *)p + buf.RegionSize;
+ protect = buf.Protect;
+ if (buf.State == MEM_COMMIT
+ && is_writable(protect)) {
+ if ((char *)p == limit) {
+ limit = new_limit;
+ } else {
+ if (base != limit) GC_add_roots_inner(base, limit, FALSE);
+ base = p;
+ limit = new_limit;
+ }
+ }
+ if (p > (LPVOID)new_limit /* overflow */) break;
+ p = (LPVOID)new_limit;
+ }
+ if (base != limit) GC_add_roots_inner(base, limit, FALSE);
+ }
+
+ void GC_register_data_segments()
+ {
+ static char dummy;
+
+ GC_register_root_section((ptr_t)(&dummy));
+ }
+# else
+# ifdef AMIGA
+
+ void GC_register_data_segments()
+ {
+ struct Process *proc;
+ struct CommandLineInterface *cli;
+ BPTR myseglist;
+ ULONG *data;
+
+ int num;
+
+
+# ifdef __GNUC__
+ ULONG dataSegSize;
+ GC_bool found_segment = FALSE;
+ extern char __data_size[];
+
+ dataSegSize=__data_size+8;
+ /* Can`t find the Location of __data_size, because
+ it`s possible that is it, inside the segment. */
+
+# endif
+
+ proc= (struct Process*)SysBase->ThisTask;
+
+ /* Reference: Amiga Guru Book Pages: 538ff,565,573
+ and XOper.asm */
+ if (proc->pr_Task.tc_Node.ln_Type==NT_PROCESS) {
+ if (proc->pr_CLI == NULL) {
+ myseglist = proc->pr_SegList;
+ } else {
+ /* ProcLoaded 'Loaded as a command: '*/
+ cli = BADDR(proc->pr_CLI);
+ myseglist = cli->cli_Module;
+ }
+ } else {
+ ABORT("Not a Process.");
+ }
+
+ if (myseglist == NULL) {
+ ABORT("Arrrgh.. can't find segments, aborting");
+ }
+
+ /* xoper hunks Shell Process */
+
+ num=0;
+ for (data = (ULONG *)BADDR(myseglist); data != NULL;
+ data = (ULONG *)BADDR(data[0])) {
+ if (((ULONG) GC_register_data_segments < (ULONG) &data[1]) ||
+ ((ULONG) GC_register_data_segments > (ULONG) &data[1] + data[-1])) {
+# ifdef __GNUC__
+ if (dataSegSize == data[-1]) {
+ found_segment = TRUE;
+ }
+# endif
+ GC_add_roots_inner((char *)&data[1],
+ ((char *)&data[1]) + data[-1], FALSE);
+ }
+ ++num;
+ } /* for */
+# ifdef __GNUC__
+ if (!found_segment) {
+ ABORT("Can`t find correct Segments.\nSolution: Use an newer version of ixemul.library");
+ }
+# endif
+ }
+
+#if 0 /* old version */
+ void GC_register_data_segments()
+ {
+ extern struct WBStartup *_WBenchMsg;
+ struct Process *proc;
+ struct CommandLineInterface *cli;
+ BPTR myseglist;
+ ULONG *data;
+
+ if ( _WBenchMsg != 0 ) {
+ if ((myseglist = _WBenchMsg->sm_Segment) == 0) {
+ GC_err_puts("No seglist from workbench\n");
+ return;
+ }
+ } else {
+ if ((proc = (struct Process *)FindTask(0)) == 0) {
+ GC_err_puts("Cannot find process structure\n");
+ return;
+ }
+ if ((cli = BADDR(proc->pr_CLI)) == 0) {
+ GC_err_puts("No CLI\n");
+ return;
+ }
+ if ((myseglist = cli->cli_Module) == 0) {
+ GC_err_puts("No seglist from CLI\n");
+ return;
+ }
+ }
+
+ for (data = (ULONG *)BADDR(myseglist); data != 0;
+ data = (ULONG *)BADDR(data[0])) {
+# ifdef AMIGA_SKIP_SEG
+ if (((ULONG) GC_register_data_segments < (ULONG) &data[1]) ||
+ ((ULONG) GC_register_data_segments > (ULONG) &data[1] + data[-1])) {
+# else
+ {
+# endif /* AMIGA_SKIP_SEG */
+ GC_add_roots_inner((char *)&data[1],
+ ((char *)&data[1]) + data[-1], FALSE);
+ }
+ }
+ }
+#endif /* old version */
+
+
+# else
+
+# if (defined(SVR4) || defined(AUX) || defined(DGUX)) && !defined(PCR)
+char * GC_SysVGetDataStart(max_page_size, etext_addr)
+int max_page_size;
+int * etext_addr;
+{
+ word text_end = ((word)(etext_addr) + sizeof(word) - 1)
+ & ~(sizeof(word) - 1);
+ /* etext rounded to word boundary */
+ word next_page = ((text_end + (word)max_page_size - 1)
+ & ~((word)max_page_size - 1));
+ word page_offset = (text_end & ((word)max_page_size - 1));
+ VOLATILE char * result = (char *)(next_page + page_offset);
+ /* Note that this isnt equivalent to just adding */
+ /* max_page_size to &etext if &etext is at a page boundary */
+
+ GC_setup_temporary_fault_handler();
+ if (setjmp(GC_jmp_buf) == 0) {
+ /* Try writing to the address. */
+ *result = *result;
+ GC_reset_fault_handler();
+ } else {
+ GC_reset_fault_handler();
+ /* We got here via a longjmp. The address is not readable. */
+ /* This is known to happen under Solaris 2.4 + gcc, which place */
+ /* string constants in the text segment, but after etext. */
+ /* Use plan B. Note that we now know there is a gap between */
+ /* text and data segments, so plan A bought us something. */
+ result = (char *)GC_find_limit((ptr_t)(DATAEND) - MIN_PAGE_SIZE, FALSE);
+ }
+ return((char *)result);
+}
+# endif
+
+
+void GC_register_data_segments()
+{
+# if !defined(PCR) && !defined(SRC_M3) && !defined(NEXT) && !defined(MACOS) \
+ && !defined(MACOSX)
+# if defined(REDIRECT_MALLOC) && defined(SOLARIS_THREADS)
+ /* As of Solaris 2.3, the Solaris threads implementation */
+ /* allocates the data structure for the initial thread with */
+ /* sbrk at process startup. It needs to be scanned, so that */
+ /* we don't lose some malloc allocated data structures */
+ /* hanging from it. We're on thin ice here ... */
+ extern caddr_t sbrk();
+
+ GC_add_roots_inner(DATASTART, (char *)sbrk(0), FALSE);
+# else
+ GC_add_roots_inner(DATASTART, (char *)(DATAEND), FALSE);
+# endif
+# endif
+# if !defined(PCR) && (defined(NEXT) || defined(MACOSX))
+ GC_add_roots_inner(DATASTART, (char *) get_end(), FALSE);
+# endif
+# if defined(MACOS)
+ {
+# if defined(THINK_C)
+ extern void* GC_MacGetDataStart(void);
+ /* globals begin above stack and end at a5. */
+ GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
+ (ptr_t)LMGetCurrentA5(), FALSE);
+# else
+# if defined(__MWERKS__)
+# if !__POWERPC__
+ extern void* GC_MacGetDataStart(void);
+ /* MATTHEW: Function to handle Far Globals (CW Pro 3) */
+# if __option(far_data)
+ extern void* GC_MacGetDataEnd(void);
+# endif
+ /* globals begin above stack and end at a5. */
+ GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
+ (ptr_t)LMGetCurrentA5(), FALSE);
+ /* MATTHEW: Handle Far Globals */
+# if __option(far_data)
+ /* Far globals follow he QD globals: */
+ GC_add_roots_inner((ptr_t)LMGetCurrentA5(),
+ (ptr_t)GC_MacGetDataEnd(), FALSE);
+# endif
+# else
+ extern char __data_start__[], __data_end__[];
+ GC_add_roots_inner((ptr_t)&__data_start__,
+ (ptr_t)&__data_end__, FALSE);
+# endif /* __POWERPC__ */
+# endif /* __MWERKS__ */
+# endif /* !THINK_C */
+ }
+# endif /* MACOS */
+
+ /* Dynamic libraries are added at every collection, since they may */
+ /* change. */
+}
+
+# endif /* ! AMIGA */
+# endif /* ! MSWIN32 */
+# endif /* ! OS2 */
+
+/*
+ * Auxiliary routines for obtaining memory from OS.
+ */
+
+# if !defined(OS2) && !defined(PCR) && !defined(AMIGA) \
+ && !defined(MSWIN32) && !defined(MACOS) && !defined(DOS4GW)
+
+# ifdef SUNOS4
+ extern caddr_t sbrk();
+# endif
+# ifdef __STDC__
+# define SBRK_ARG_T ptrdiff_t
+# else
+# define SBRK_ARG_T int
+# endif
+
+# ifdef RS6000
+/* The compiler seems to generate speculative reads one past the end of */
+/* an allocated object. Hence we need to make sure that the page */
+/* following the last heap page is also mapped. */
+ptr_t GC_unix_get_mem(bytes)
+word bytes;
+{
+ caddr_t cur_brk = (caddr_t)sbrk(0);
+ caddr_t result;
+ SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
+ static caddr_t my_brk_val = 0;
+
+ if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
+ if (lsbs != 0) {
+ if((caddr_t)(sbrk(GC_page_size - lsbs)) == (caddr_t)(-1)) return(0);
+ }
+ if (cur_brk == my_brk_val) {
+ /* Use the extra block we allocated last time. */
+ result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
+ if (result == (caddr_t)(-1)) return(0);
+ result -= GC_page_size;
+ } else {
+ result = (ptr_t)sbrk(GC_page_size + (SBRK_ARG_T)bytes);
+ if (result == (caddr_t)(-1)) return(0);
+ }
+ my_brk_val = result + bytes + GC_page_size; /* Always page aligned */
+ return((ptr_t)result);
+}
+
+#else /* Not RS6000 */
+
+#if defined(USE_MMAP)
+/* Tested only under IRIX5 and Solaris 2 */
+
+#ifdef USE_MMAP_FIXED
+# define GC_MMAP_FLAGS MAP_FIXED | MAP_PRIVATE
+ /* Seems to yield better performance on Solaris 2, but can */
+ /* be unreliable if something is already mapped at the address. */
+#else
+# define GC_MMAP_FLAGS MAP_PRIVATE
+#endif
+
+ptr_t GC_unix_get_mem(bytes)
+word bytes;
+{
+ static GC_bool initialized = FALSE;
+ static int fd;
+ void *result;
+ static ptr_t last_addr = HEAP_START;
+
+ if (!initialized) {
+ fd = open("/dev/zero", O_RDONLY);
+ initialized = TRUE;
+ }
+ if (bytes & (GC_page_size -1)) ABORT("Bad GET_MEM arg");
+ result = mmap(last_addr, bytes, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
+ GC_MMAP_FLAGS, fd, 0/* offset */);
+ if (result == MAP_FAILED) return(0);
+ last_addr = (ptr_t)result + bytes + GC_page_size - 1;
+ last_addr = (ptr_t)((word)last_addr & ~(GC_page_size - 1));
+ return((ptr_t)result);
+}
+
+#else /* Not RS6000, not USE_MMAP */
+ptr_t GC_unix_get_mem(bytes)
+word bytes;
+{
+ ptr_t result;
+# ifdef IRIX5
+ /* Bare sbrk isn't thread safe. Play by malloc rules. */
+ /* The equivalent may be needed on other systems as well. */
+ __LOCK_MALLOC();
+# endif
+ {
+ ptr_t cur_brk = (ptr_t)sbrk(0);
+ SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
+
+ if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
+ if (lsbs != 0) {
+ if((ptr_t)sbrk(GC_page_size - lsbs) == (ptr_t)(-1)) return(0);
+ }
+ result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
+ if (result == (ptr_t)(-1)) result = 0;
+ }
+# ifdef IRIX5
+ __UNLOCK_MALLOC();
+# endif
+ return(result);
+}
+
+#endif /* Not USE_MMAP */
+#endif /* Not RS6000 */
+
+# endif /* UN*X */
+
+# ifdef OS2
+
+void * os2_alloc(size_t bytes)
+{
+ void * result;
+
+ if (DosAllocMem(&result, bytes, PAG_EXECUTE | PAG_READ |
+ PAG_WRITE | PAG_COMMIT)
+ != NO_ERROR) {
+ return(0);
+ }
+ if (result == 0) return(os2_alloc(bytes));
+ return(result);
+}
+
+# endif /* OS2 */
+
+
+# ifdef MSWIN32
+word GC_n_heap_bases = 0;
+
+ptr_t GC_win32_get_mem(bytes)
+word bytes;
+{
+ ptr_t result;
+
+ if (GC_win32s) {
+ /* VirtualAlloc doesn't like PAGE_EXECUTE_READWRITE. */
+ /* There are also unconfirmed rumors of other */
+ /* problems, so we dodge the issue. */
+ result = (ptr_t) GlobalAlloc(0, bytes + HBLKSIZE);
+ result = (ptr_t)(((word)result + HBLKSIZE) & ~(HBLKSIZE-1));
+ } else {
+ result = (ptr_t) VirtualAlloc(NULL, bytes,
+ MEM_COMMIT | MEM_RESERVE,
+ PAGE_EXECUTE_READWRITE);
+ }
+ if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
+ /* If I read the documentation correctly, this can */
+ /* only happen if HBLKSIZE > 64k or not a power of 2. */
+ if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
+ GC_heap_bases[GC_n_heap_bases++] = result;
+ return(result);
+}
+
+void GC_win32_free_heap ()
+{
+ if (GC_win32s) {
+ while (GC_n_heap_bases > 0) {
+ GlobalFree (GC_heap_bases[--GC_n_heap_bases]);
+ GC_heap_bases[GC_n_heap_bases] = 0;
+ }
+ }
+}
+
+
+# endif
+
+#ifdef USE_MUNMAP
+
+/* For now, this only works on some Unix-like systems. If you */
+/* have something else, don't define USE_MUNMAP. */
+/* We assume ANSI C to support this feature. */
+#include <unistd.h>
+#include <sys/mman.h>
+#include <sys/stat.h>
+#include <sys/types.h>
+#include <fcntl.h>
+
+/* Compute a page aligned starting address for the unmap */
+/* operation on a block of size bytes starting at start. */
+/* Return 0 if the block is too small to make this feasible. */
+ptr_t GC_unmap_start(ptr_t start, word bytes)
+{
+ ptr_t result = start;
+ /* Round start to next page boundary. */
+ result += GC_page_size - 1;
+ result = (ptr_t)((word)result & ~(GC_page_size - 1));
+ if (result + GC_page_size > start + bytes) return 0;
+ return result;
+}
+
+/* Compute end address for an unmap operation on the indicated */
+/* block. */
+ptr_t GC_unmap_end(ptr_t start, word bytes)
+{
+ ptr_t end_addr = start + bytes;
+ end_addr = (ptr_t)((word)end_addr & ~(GC_page_size - 1));
+ return end_addr;
+}
+
+/* We assume that GC_remap is called on exactly the same range */
+/* as a previous call to GC_unmap. It is safe to consistently */
+/* round the endpoints in both places. */
+void GC_unmap(ptr_t start, word bytes)
+{
+ ptr_t start_addr = GC_unmap_start(start, bytes);
+ ptr_t end_addr = GC_unmap_end(start, bytes);
+ word len = end_addr - start_addr;
+ if (0 == start_addr) return;
+ if (munmap(start_addr, len) != 0) ABORT("munmap failed");
+ GC_unmapped_bytes += len;
+}
+
+
+void GC_remap(ptr_t start, word bytes)
+{
+ static int zero_descr = -1;
+ ptr_t start_addr = GC_unmap_start(start, bytes);
+ ptr_t end_addr = GC_unmap_end(start, bytes);
+ word len = end_addr - start_addr;
+ ptr_t result;
+
+ if (-1 == zero_descr) zero_descr = open("/dev/zero", O_RDWR);
+ if (0 == start_addr) return;
+ result = mmap(start_addr, len, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
+ MAP_FIXED | MAP_PRIVATE, zero_descr, 0);
+ if (result != start_addr) {
+ ABORT("mmap remapping failed");
+ }
+ GC_unmapped_bytes -= len;
+}
+
+/* Two adjacent blocks have already been unmapped and are about to */
+/* be merged. Unmap the whole block. This typically requires */
+/* that we unmap a small section in the middle that was not previously */
+/* unmapped due to alignment constraints. */
+void GC_unmap_gap(ptr_t start1, word bytes1, ptr_t start2, word bytes2)
+{
+ ptr_t start1_addr = GC_unmap_start(start1, bytes1);
+ ptr_t end1_addr = GC_unmap_end(start1, bytes1);
+ ptr_t start2_addr = GC_unmap_start(start2, bytes2);
+ ptr_t end2_addr = GC_unmap_end(start2, bytes2);
+ ptr_t start_addr = end1_addr;
+ ptr_t end_addr = start2_addr;
+ word len;
+ GC_ASSERT(start1 + bytes1 == start2);
+ if (0 == start1_addr) start_addr = GC_unmap_start(start1, bytes1 + bytes2);
+ if (0 == start2_addr) end_addr = GC_unmap_end(start1, bytes1 + bytes2);
+ if (0 == start_addr) return;
+ len = end_addr - start_addr;
+ if (len != 0 && munmap(start_addr, len) != 0) ABORT("munmap failed");
+ GC_unmapped_bytes += len;
+}
+
+#endif /* USE_MUNMAP */
+
+/* Routine for pushing any additional roots. In THREADS */
+/* environment, this is also responsible for marking from */
+/* thread stacks. In the SRC_M3 case, it also handles */
+/* global variables. */
+#ifndef THREADS
+void (*GC_push_other_roots)() = 0;
+#else /* THREADS */
+
+# ifdef PCR
+PCR_ERes GC_push_thread_stack(PCR_Th_T *t, PCR_Any dummy)
+{
+ struct PCR_ThCtl_TInfoRep info;
+ PCR_ERes result;
+
+ info.ti_stkLow = info.ti_stkHi = 0;
+ result = PCR_ThCtl_GetInfo(t, &info);
+ GC_push_all_stack((ptr_t)(info.ti_stkLow), (ptr_t)(info.ti_stkHi));
+ return(result);
+}
+
+/* Push the contents of an old object. We treat this as stack */
+/* data only becasue that makes it robust against mark stack */
+/* overflow. */
+PCR_ERes GC_push_old_obj(void *p, size_t size, PCR_Any data)
+{
+ GC_push_all_stack((ptr_t)p, (ptr_t)p + size);
+ return(PCR_ERes_okay);
+}
+
+
+void GC_default_push_other_roots()
+{
+ /* Traverse data allocated by previous memory managers. */
+ {
+ extern struct PCR_MM_ProcsRep * GC_old_allocator;
+
+ if ((*(GC_old_allocator->mmp_enumerate))(PCR_Bool_false,
+ GC_push_old_obj, 0)
+ != PCR_ERes_okay) {
+ ABORT("Old object enumeration failed");
+ }
+ }
+ /* Traverse all thread stacks. */
+ if (PCR_ERes_IsErr(
+ PCR_ThCtl_ApplyToAllOtherThreads(GC_push_thread_stack,0))
+ || PCR_ERes_IsErr(GC_push_thread_stack(PCR_Th_CurrThread(), 0))) {
+ ABORT("Thread stack marking failed\n");
+ }
+}
+
+# endif /* PCR */
+
+# ifdef SRC_M3
+
+# ifdef ALL_INTERIOR_POINTERS
+ --> misconfigured
+# endif
+
+
+extern void ThreadF__ProcessStacks();
+
+void GC_push_thread_stack(start, stop)
+word start, stop;
+{
+ GC_push_all_stack((ptr_t)start, (ptr_t)stop + sizeof(word));
+}
+
+/* Push routine with M3 specific calling convention. */
+GC_m3_push_root(dummy1, p, dummy2, dummy3)
+word *p;
+ptr_t dummy1, dummy2;
+int dummy3;
+{
+ word q = *p;
+
+ if ((ptr_t)(q) >= GC_least_plausible_heap_addr
+ && (ptr_t)(q) < GC_greatest_plausible_heap_addr) {
+ GC_push_one_checked(q,FALSE);
+ }
+}
+
+/* M3 set equivalent to RTHeap.TracedRefTypes */
+typedef struct { int elts[1]; } RefTypeSet;
+RefTypeSet GC_TracedRefTypes = {{0x1}};
+
+/* From finalize.c */
+extern void GC_push_finalizer_structures();
+
+/* From stubborn.c: */
+# ifdef STUBBORN_ALLOC
+ extern GC_PTR * GC_changing_list_start;
+# endif
+
+
+void GC_default_push_other_roots()
+{
+ /* Use the M3 provided routine for finding static roots. */
+ /* This is a bit dubious, since it presumes no C roots. */
+ /* We handle the collector roots explicitly. */
+ {
+# ifdef STUBBORN_ALLOC
+ GC_push_one(GC_changing_list_start);
+# endif
+ GC_push_finalizer_structures();
+ RTMain__GlobalMapProc(GC_m3_push_root, 0, GC_TracedRefTypes);
+ }
+ if (GC_words_allocd > 0) {
+ ThreadF__ProcessStacks(GC_push_thread_stack);
+ }
+ /* Otherwise this isn't absolutely necessary, and we have */
+ /* startup ordering problems. */
+}
+
+# endif /* SRC_M3 */
+
+# if defined(SOLARIS_THREADS) || defined(WIN32_THREADS) \
+ || defined(IRIX_THREADS) || defined(LINUX_THREADS) \
+ || defined(IRIX_PCR_THREADS)
+
+extern void GC_push_all_stacks();
+
+void GC_default_push_other_roots()
+{
+ GC_push_all_stacks();
+}
+
+# endif /* SOLARIS_THREADS || ... */
+
+void (*GC_push_other_roots)() = GC_default_push_other_roots;
+
+#endif
+
+/*
+ * Routines for accessing dirty bits on virtual pages.
+ * We plan to eventaually implement four strategies for doing so:
+ * DEFAULT_VDB: A simple dummy implementation that treats every page
+ * as possibly dirty. This makes incremental collection
+ * useless, but the implementation is still correct.
+ * PCR_VDB: Use PPCRs virtual dirty bit facility.
+ * PROC_VDB: Use the /proc facility for reading dirty bits. Only
+ * works under some SVR4 variants. Even then, it may be
+ * too slow to be entirely satisfactory. Requires reading
+ * dirty bits for entire address space. Implementations tend
+ * to assume that the client is a (slow) debugger.
+ * MPROTECT_VDB:Protect pages and then catch the faults to keep track of
+ * dirtied pages. The implementation (and implementability)
+ * is highly system dependent. This usually fails when system
+ * calls write to a protected page. We prevent the read system
+ * call from doing so. It is the clients responsibility to
+ * make sure that other system calls are similarly protected
+ * or write only to the stack.
+ */
+
+GC_bool GC_dirty_maintained = FALSE;
+
+# ifdef DEFAULT_VDB
+
+/* All of the following assume the allocation lock is held, and */
+/* signals are disabled. */
+
+/* The client asserts that unallocated pages in the heap are never */
+/* written. */
+
+/* Initialize virtual dirty bit implementation. */
+void GC_dirty_init()
+{
+ GC_dirty_maintained = TRUE;
+}
+
+/* Retrieve system dirty bits for heap to a local buffer. */
+/* Restore the systems notion of which pages are dirty. */
+void GC_read_dirty()
+{}
+
+/* Is the HBLKSIZE sized page at h marked dirty in the local buffer? */
+/* If the actual page size is different, this returns TRUE if any */
+/* of the pages overlapping h are dirty. This routine may err on the */
+/* side of labelling pages as dirty (and this implementation does). */
+/*ARGSUSED*/
+GC_bool GC_page_was_dirty(h)
+struct hblk *h;
+{
+ return(TRUE);
+}
+
+/*
+ * The following two routines are typically less crucial. They matter
+ * most with large dynamic libraries, or if we can't accurately identify
+ * stacks, e.g. under Solaris 2.X. Otherwise the following default
+ * versions are adequate.
+ */
+
+/* Could any valid GC heap pointer ever have been written to this page? */
+/*ARGSUSED*/
+GC_bool GC_page_was_ever_dirty(h)
+struct hblk *h;
+{
+ return(TRUE);
+}
+
+/* Reset the n pages starting at h to "was never dirty" status. */
+void GC_is_fresh(h, n)
+struct hblk *h;
+word n;
+{
+}
+
+/* A call hints that h is about to be written. */
+/* May speed up some dirty bit implementations. */
+/*ARGSUSED*/
+void GC_write_hint(h)
+struct hblk *h;
+{
+}
+
+# endif /* DEFAULT_VDB */
+
+
+# ifdef MPROTECT_VDB
+
+/*
+ * See DEFAULT_VDB for interface descriptions.
+ */
+
+/*
+ * This implementation maintains dirty bits itself by catching write
+ * faults and keeping track of them. We assume nobody else catches
+ * SIGBUS or SIGSEGV. We assume no write faults occur in system calls
+ * except as a result of a read system call. This means clients must
+ * either ensure that system calls do not touch the heap, or must
+ * provide their own wrappers analogous to the one for read.
+ * We assume the page size is a multiple of HBLKSIZE.
+ * This implementation is currently SunOS 4.X and IRIX 5.X specific, though we
+ * tried to use portable code where easily possible. It is known
+ * not to work under a number of other systems.
+ */
+
+# ifndef MSWIN32
+
+# include <sys/mman.h>
+# include <signal.h>
+# include <sys/syscall.h>
+
+# define PROTECT(addr, len) \
+ if (mprotect((caddr_t)(addr), (int)(len), \
+ PROT_READ | OPT_PROT_EXEC) < 0) { \
+ ABORT("mprotect failed"); \
+ }
+# define UNPROTECT(addr, len) \
+ if (mprotect((caddr_t)(addr), (int)(len), \
+ PROT_WRITE | PROT_READ | OPT_PROT_EXEC ) < 0) { \
+ ABORT("un-mprotect failed"); \
+ }
+
+# else
+
+# include <signal.h>
+
+ static DWORD protect_junk;
+# define PROTECT(addr, len) \
+ if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READ, \
+ &protect_junk)) { \
+ DWORD last_error = GetLastError(); \
+ GC_printf1("Last error code: %lx\n", last_error); \
+ ABORT("VirtualProtect failed"); \
+ }
+# define UNPROTECT(addr, len) \
+ if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READWRITE, \
+ &protect_junk)) { \
+ ABORT("un-VirtualProtect failed"); \
+ }
+
+# endif
+
+#if defined(SUNOS4) || defined(FREEBSD)
+ typedef void (* SIG_PF)();
+#endif
+#if defined(SUNOS5SIGS) || defined(OSF1) || defined(LINUX)
+ typedef void (* SIG_PF)(int);
+#endif
+#if defined(MSWIN32)
+ typedef LPTOP_LEVEL_EXCEPTION_FILTER SIG_PF;
+# undef SIG_DFL
+# define SIG_DFL (LPTOP_LEVEL_EXCEPTION_FILTER) (-1)
+#endif
+
+#if defined(IRIX5) || defined(OSF1)
+ typedef void (* REAL_SIG_PF)(int, int, struct sigcontext *);
+#endif
+#if defined(SUNOS5SIGS)
+ typedef void (* REAL_SIG_PF)(int, struct siginfo *, void *);
+#endif
+#if defined(LINUX)
+# include <linux/version.h>
+# if (LINUX_VERSION_CODE >= 0x20100) && !defined(M68K) || defined(ALPHA)
+ typedef struct sigcontext s_c;
+# else
+ typedef struct sigcontext_struct s_c;
+# endif
+# ifdef ALPHA
+ typedef void (* REAL_SIG_PF)(int, int, s_c *);
+ /* Retrieve fault address from sigcontext structure by decoding */
+ /* instruction. */
+ char * get_fault_addr(s_c *sc) {
+ unsigned instr;
+ word faultaddr;
+
+ instr = *((unsigned *)(sc->sc_pc));
+ faultaddr = sc->sc_regs[(instr >> 16) & 0x1f];
+ faultaddr += (word) (((int)instr << 16) >> 16);
+ return (char *)faultaddr;
+ }
+# else /* !ALPHA */
+ typedef void (* REAL_SIG_PF)(int, s_c);
+# endif /* !ALPHA */
+# endif
+
+SIG_PF GC_old_bus_handler;
+SIG_PF GC_old_segv_handler; /* Also old MSWIN32 ACCESS_VIOLATION filter */
+
+/*ARGSUSED*/
+# if defined (SUNOS4) || defined(FREEBSD)
+ void GC_write_fault_handler(sig, code, scp, addr)
+ int sig, code;
+ struct sigcontext *scp;
+ char * addr;
+# ifdef SUNOS4
+# define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
+# define CODE_OK (FC_CODE(code) == FC_PROT \
+ || (FC_CODE(code) == FC_OBJERR \
+ && FC_ERRNO(code) == FC_PROT))
+# endif
+# ifdef FREEBSD
+# define SIG_OK (sig == SIGBUS)
+# define CODE_OK (code == BUS_PAGE_FAULT)
+# endif
+# endif
+# if defined(IRIX5) || defined(OSF1)
+# include <errno.h>
+ void GC_write_fault_handler(int sig, int code, struct sigcontext *scp)
+# define SIG_OK (sig == SIGSEGV)
+# ifdef OSF1
+# define CODE_OK (code == 2 /* experimentally determined */)
+# endif
+# ifdef IRIX5
+# define CODE_OK (code == EACCES)
+# endif
+# endif
+# if defined(LINUX)
+# ifdef ALPHA
+ void GC_write_fault_handler(int sig, int code, s_c * sc)
+# else
+ void GC_write_fault_handler(int sig, s_c sc)
+# endif
+# define SIG_OK (sig == SIGSEGV)
+# define CODE_OK TRUE
+ /* Empirically c.trapno == 14, but is that useful? */
+ /* We assume Intel architecture, so alignment */
+ /* faults are not possible. */
+# endif
+# if defined(SUNOS5SIGS)
+ void GC_write_fault_handler(int sig, struct siginfo *scp, void * context)
+# define SIG_OK (sig == SIGSEGV)
+# define CODE_OK (scp -> si_code == SEGV_ACCERR)
+# endif
+# if defined(MSWIN32)
+ LONG WINAPI GC_write_fault_handler(struct _EXCEPTION_POINTERS *exc_info)
+# define SIG_OK (exc_info -> ExceptionRecord -> ExceptionCode == \
+ EXCEPTION_ACCESS_VIOLATION)
+# define CODE_OK (exc_info -> ExceptionRecord -> ExceptionInformation[0] == 1)
+ /* Write fault */
+# endif
+{
+ register unsigned i;
+# ifdef IRIX5
+ char * addr = (char *) (size_t) (scp -> sc_badvaddr);
+# endif
+# if defined(OSF1) && defined(ALPHA)
+ char * addr = (char *) (scp -> sc_traparg_a0);
+# endif
+# ifdef SUNOS5SIGS
+ char * addr = (char *) (scp -> si_addr);
+# endif
+# ifdef LINUX
+# ifdef I386
+ char * addr = (char *) (sc.cr2);
+# else
+# if defined(M68K)
+ char * addr = NULL;
+
+ struct sigcontext *scp = (struct sigcontext *)(&sc);
+
+ int format = (scp->sc_formatvec >> 12) & 0xf;
+ unsigned long *framedata = (unsigned long *)(scp + 1);
+ unsigned long ea;
+
+ if (format == 0xa || format == 0xb) {
+ /* 68020/030 */
+ ea = framedata[2];
+ } else if (format == 7) {
+ /* 68040 */
+ ea = framedata[3];
+ } else if (format == 4) {
+ /* 68060 */
+ ea = framedata[0];
+ if (framedata[1] & 0x08000000) {
+ /* correct addr on misaligned access */
+ ea = (ea+4095)&(~4095);
+ }
+ }
+ addr = (char *)ea;
+# else
+# ifdef ALPHA
+ char * addr = get_fault_addr(sc);
+# else
+ --> architecture not supported
+# endif
+# endif
+# endif
+# endif
+# if defined(MSWIN32)
+ char * addr = (char *) (exc_info -> ExceptionRecord
+ -> ExceptionInformation[1]);
+# define sig SIGSEGV
+# endif
+
+ if (SIG_OK && CODE_OK) {
+ register struct hblk * h =
+ (struct hblk *)((word)addr & ~(GC_page_size-1));
+ GC_bool in_allocd_block;
+
+# ifdef SUNOS5SIGS
+ /* Address is only within the correct physical page. */
+ in_allocd_block = FALSE;
+ for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
+ if (HDR(h+i) != 0) {
+ in_allocd_block = TRUE;
+ }
+ }
+# else
+ in_allocd_block = (HDR(addr) != 0);
+# endif
+ if (!in_allocd_block) {
+ /* Heap blocks now begin and end on page boundaries */
+ SIG_PF old_handler;
+
+ if (sig == SIGSEGV) {
+ old_handler = GC_old_segv_handler;
+ } else {
+ old_handler = GC_old_bus_handler;
+ }
+ if (old_handler == SIG_DFL) {
+# ifndef MSWIN32
+ GC_err_printf1("Segfault at 0x%lx\n", addr);
+ ABORT("Unexpected bus error or segmentation fault");
+# else
+ return(EXCEPTION_CONTINUE_SEARCH);
+# endif
+ } else {
+# if defined (SUNOS4) || defined(FREEBSD)
+ (*old_handler) (sig, code, scp, addr);
+ return;
+# endif
+# if defined (SUNOS5SIGS)
+ (*(REAL_SIG_PF)old_handler) (sig, scp, context);
+ return;
+# endif
+# if defined (LINUX)
+# ifdef ALPHA
+ (*(REAL_SIG_PF)old_handler) (sig, code, sc);
+# else
+ (*(REAL_SIG_PF)old_handler) (sig, sc);
+# endif
+ return;
+# endif
+# if defined (IRIX5) || defined(OSF1)
+ (*(REAL_SIG_PF)old_handler) (sig, code, scp);
+ return;
+# endif
+# ifdef MSWIN32
+ return((*old_handler)(exc_info));
+# endif
+ }
+ }
+ for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
+ register int index = PHT_HASH(h+i);
+
+ set_pht_entry_from_index(GC_dirty_pages, index);
+ }
+ UNPROTECT(h, GC_page_size);
+# if defined(OSF1) || defined(LINUX)
+ /* These reset the signal handler each time by default. */
+ signal(SIGSEGV, (SIG_PF) GC_write_fault_handler);
+# endif
+ /* The write may not take place before dirty bits are read. */
+ /* But then we'll fault again ... */
+# ifdef MSWIN32
+ return(EXCEPTION_CONTINUE_EXECUTION);
+# else
+ return;
+# endif
+ }
+#ifdef MSWIN32
+ return EXCEPTION_CONTINUE_SEARCH;
+#else
+ GC_err_printf1("Segfault at 0x%lx\n", addr);
+ ABORT("Unexpected bus error or segmentation fault");
+#endif
+}
+
+/*
+ * We hold the allocation lock. We expect block h to be written
+ * shortly.
+ */
+void GC_write_hint(h)
+struct hblk *h;
+{
+ register struct hblk * h_trunc;
+ register unsigned i;
+ register GC_bool found_clean;
+
+ if (!GC_dirty_maintained) return;
+ h_trunc = (struct hblk *)((word)h & ~(GC_page_size-1));
+ found_clean = FALSE;
+ for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
+ register int index = PHT_HASH(h_trunc+i);
+
+ if (!get_pht_entry_from_index(GC_dirty_pages, index)) {
+ found_clean = TRUE;
+ set_pht_entry_from_index(GC_dirty_pages, index);
+ }
+ }
+ if (found_clean) {
+ UNPROTECT(h_trunc, GC_page_size);
+ }
+}
+
+void GC_dirty_init()
+{
+#if defined(SUNOS5SIGS) || defined(IRIX5) /* || defined(OSF1) */
+ struct sigaction act, oldact;
+# ifdef IRIX5
+ act.sa_flags = SA_RESTART;
+ act.sa_handler = GC_write_fault_handler;
+# else
+ act.sa_flags = SA_RESTART | SA_SIGINFO;
+ act.sa_sigaction = GC_write_fault_handler;
+# endif
+ (void)sigemptyset(&act.sa_mask);
+#endif
+# ifdef PRINTSTATS
+ GC_printf0("Inititalizing mprotect virtual dirty bit implementation\n");
+# endif
+ GC_dirty_maintained = TRUE;
+ if (GC_page_size % HBLKSIZE != 0) {
+ GC_err_printf0("Page size not multiple of HBLKSIZE\n");
+ ABORT("Page size not multiple of HBLKSIZE");
+ }
+# if defined(SUNOS4) || defined(FREEBSD)
+ GC_old_bus_handler = signal(SIGBUS, GC_write_fault_handler);
+ if (GC_old_bus_handler == SIG_IGN) {
+ GC_err_printf0("Previously ignored bus error!?");
+ GC_old_bus_handler = SIG_DFL;
+ }
+ if (GC_old_bus_handler != SIG_DFL) {
+# ifdef PRINTSTATS
+ GC_err_printf0("Replaced other SIGBUS handler\n");
+# endif
+ }
+# endif
+# if defined(OSF1) || defined(SUNOS4) || defined(LINUX)
+ GC_old_segv_handler = signal(SIGSEGV, (SIG_PF)GC_write_fault_handler);
+ if (GC_old_segv_handler == SIG_IGN) {
+ GC_err_printf0("Previously ignored segmentation violation!?");
+ GC_old_segv_handler = SIG_DFL;
+ }
+ if (GC_old_segv_handler != SIG_DFL) {
+# ifdef PRINTSTATS
+ GC_err_printf0("Replaced other SIGSEGV handler\n");
+# endif
+ }
+# endif
+# if defined(SUNOS5SIGS) || defined(IRIX5)
+# if defined(IRIX_THREADS) || defined(IRIX_PCR_THREADS)
+ sigaction(SIGSEGV, 0, &oldact);
+ sigaction(SIGSEGV, &act, 0);
+# else
+ sigaction(SIGSEGV, &act, &oldact);
+# endif
+# if defined(_sigargs)
+ /* This is Irix 5.x, not 6.x. Irix 5.x does not have */
+ /* sa_sigaction. */
+ GC_old_segv_handler = oldact.sa_handler;
+# else /* Irix 6.x or SUNOS5SIGS */
+ if (oldact.sa_flags & SA_SIGINFO) {
+ GC_old_segv_handler = (SIG_PF)(oldact.sa_sigaction);
+ } else {
+ GC_old_segv_handler = oldact.sa_handler;
+ }
+# endif
+ if (GC_old_segv_handler == SIG_IGN) {
+ GC_err_printf0("Previously ignored segmentation violation!?");
+ GC_old_segv_handler = SIG_DFL;
+ }
+ if (GC_old_segv_handler != SIG_DFL) {
+# ifdef PRINTSTATS
+ GC_err_printf0("Replaced other SIGSEGV handler\n");
+# endif
+ }
+# endif
+# if defined(MSWIN32)
+ GC_old_segv_handler = SetUnhandledExceptionFilter(GC_write_fault_handler);
+ if (GC_old_segv_handler != NULL) {
+# ifdef PRINTSTATS
+ GC_err_printf0("Replaced other UnhandledExceptionFilter\n");
+# endif
+ } else {
+ GC_old_segv_handler = SIG_DFL;
+ }
+# endif
+}
+
+
+
+void GC_protect_heap()
+{
+ ptr_t start;
+ word len;
+ unsigned i;
+
+ for (i = 0; i < GC_n_heap_sects; i++) {
+ start = GC_heap_sects[i].hs_start;
+ len = GC_heap_sects[i].hs_bytes;
+ PROTECT(start, len);
+ }
+}
+
+/* We assume that either the world is stopped or its OK to lose dirty */
+/* bits while this is happenning (as in GC_enable_incremental). */
+void GC_read_dirty()
+{
+ BCOPY((word *)GC_dirty_pages, GC_grungy_pages,
+ (sizeof GC_dirty_pages));
+ BZERO((word *)GC_dirty_pages, (sizeof GC_dirty_pages));
+ GC_protect_heap();
+}
+
+GC_bool GC_page_was_dirty(h)
+struct hblk * h;
+{
+ register word index = PHT_HASH(h);
+
+ return(HDR(h) == 0 || get_pht_entry_from_index(GC_grungy_pages, index));
+}
+
+/*
+ * Acquiring the allocation lock here is dangerous, since this
+ * can be called from within GC_call_with_alloc_lock, and the cord
+ * package does so. On systems that allow nested lock acquisition, this
+ * happens to work.
+ * On other systems, SET_LOCK_HOLDER and friends must be suitably defined.
+ */
+
+void GC_begin_syscall()
+{
+ if (!I_HOLD_LOCK()) LOCK();
+}
+
+void GC_end_syscall()
+{
+ if (!I_HOLD_LOCK()) UNLOCK();
+}
+
+void GC_unprotect_range(addr, len)
+ptr_t addr;
+word len;
+{
+ struct hblk * start_block;
+ struct hblk * end_block;
+ register struct hblk *h;
+ ptr_t obj_start;
+
+ if (!GC_incremental) return;
+ obj_start = GC_base(addr);
+ if (obj_start == 0) return;
+ if (GC_base(addr + len - 1) != obj_start) {
+ ABORT("GC_unprotect_range(range bigger than object)");
+ }
+ start_block = (struct hblk *)((word)addr & ~(GC_page_size - 1));
+ end_block = (struct hblk *)((word)(addr + len - 1) & ~(GC_page_size - 1));
+ end_block += GC_page_size/HBLKSIZE - 1;
+ for (h = start_block; h <= end_block; h++) {
+ register word index = PHT_HASH(h);
+
+ set_pht_entry_from_index(GC_dirty_pages, index);
+ }
+ UNPROTECT(start_block,
+ ((ptr_t)end_block - (ptr_t)start_block) + HBLKSIZE);
+}
+
+#ifndef MSWIN32
+/* Replacement for UNIX system call. */
+/* Other calls that write to the heap */
+/* should be handled similarly. */
+# if defined(__STDC__) && !defined(SUNOS4)
+# include <unistd.h>
+ ssize_t read(int fd, void *buf, size_t nbyte)
+# else
+# ifndef LINT
+ int read(fd, buf, nbyte)
+# else
+ int GC_read(fd, buf, nbyte)
+# endif
+ int fd;
+ char *buf;
+ int nbyte;
+# endif
+{
+ int result;
+
+ GC_begin_syscall();
+ GC_unprotect_range(buf, (word)nbyte);
+# ifdef IRIX5
+ /* Indirect system call may not always be easily available. */
+ /* We could call _read, but that would interfere with the */
+ /* libpthread interception of read. */
+ {
+ struct iovec iov;
+
+ iov.iov_base = buf;
+ iov.iov_len = nbyte;
+ result = readv(fd, &iov, 1);
+ }
+# else
+ result = syscall(SYS_read, fd, buf, nbyte);
+# endif
+ GC_end_syscall();
+ return(result);
+}
+#endif /* !MSWIN32 */
+
+/*ARGSUSED*/
+GC_bool GC_page_was_ever_dirty(h)
+struct hblk *h;
+{
+ return(TRUE);
+}
+
+/* Reset the n pages starting at h to "was never dirty" status. */
+/*ARGSUSED*/
+void GC_is_fresh(h, n)
+struct hblk *h;
+word n;
+{
+}
+
+# endif /* MPROTECT_VDB */
+
+# ifdef PROC_VDB
+
+/*
+ * See DEFAULT_VDB for interface descriptions.
+ */
+
+/*
+ * This implementaion assumes a Solaris 2.X like /proc pseudo-file-system
+ * from which we can read page modified bits. This facility is far from
+ * optimal (e.g. we would like to get the info for only some of the
+ * address space), but it avoids intercepting system calls.
+ */
+
+#include <errno.h>
+#include <sys/types.h>
+#include <sys/signal.h>
+#include <sys/fault.h>
+#include <sys/syscall.h>
+#include <sys/procfs.h>
+#include <sys/stat.h>
+#include <fcntl.h>
+
+#define INITIAL_BUF_SZ 4096
+word GC_proc_buf_size = INITIAL_BUF_SZ;
+char *GC_proc_buf;
+
+#ifdef SOLARIS_THREADS
+/* We don't have exact sp values for threads. So we count on */
+/* occasionally declaring stack pages to be fresh. Thus we */
+/* need a real implementation of GC_is_fresh. We can't clear */
+/* entries in GC_written_pages, since that would declare all */
+/* pages with the given hash address to be fresh. */
+# define MAX_FRESH_PAGES 8*1024 /* Must be power of 2 */
+ struct hblk ** GC_fresh_pages; /* A direct mapped cache. */
+ /* Collisions are dropped. */
+
+# define FRESH_PAGE_SLOT(h) (divHBLKSZ((word)(h)) & (MAX_FRESH_PAGES-1))
+# define ADD_FRESH_PAGE(h) \
+ GC_fresh_pages[FRESH_PAGE_SLOT(h)] = (h)
+# define PAGE_IS_FRESH(h) \
+ (GC_fresh_pages[FRESH_PAGE_SLOT(h)] == (h) && (h) != 0)
+#endif
+
+/* Add all pages in pht2 to pht1 */
+void GC_or_pages(pht1, pht2)
+page_hash_table pht1, pht2;
+{
+ register int i;
+
+ for (i = 0; i < PHT_SIZE; i++) pht1[i] |= pht2[i];
+}
+
+int GC_proc_fd;
+
+void GC_dirty_init()
+{
+ int fd;
+ char buf[30];
+
+ GC_dirty_maintained = TRUE;
+ if (GC_words_allocd != 0 || GC_words_allocd_before_gc != 0) {
+ register int i;
+
+ for (i = 0; i < PHT_SIZE; i++) GC_written_pages[i] = (word)(-1);
+# ifdef PRINTSTATS
+ GC_printf1("Allocated words:%lu:all pages may have been written\n",
+ (unsigned long)
+ (GC_words_allocd + GC_words_allocd_before_gc));
+# endif
+ }
+ sprintf(buf, "/proc/%d", getpid());
+ fd = open(buf, O_RDONLY);
+ if (fd < 0) {
+ ABORT("/proc open failed");
+ }
+ GC_proc_fd = syscall(SYS_ioctl, fd, PIOCOPENPD, 0);
+ close(fd);
+ if (GC_proc_fd < 0) {
+ ABORT("/proc ioctl failed");
+ }
+ GC_proc_buf = GC_scratch_alloc(GC_proc_buf_size);
+# ifdef SOLARIS_THREADS
+ GC_fresh_pages = (struct hblk **)
+ GC_scratch_alloc(MAX_FRESH_PAGES * sizeof (struct hblk *));
+ if (GC_fresh_pages == 0) {
+ GC_err_printf0("No space for fresh pages\n");
+ EXIT();
+ }
+ BZERO(GC_fresh_pages, MAX_FRESH_PAGES * sizeof (struct hblk *));
+# endif
+}
+
+/* Ignore write hints. They don't help us here. */
+/*ARGSUSED*/
+void GC_write_hint(h)
+struct hblk *h;
+{
+}
+
+#ifdef SOLARIS_THREADS
+# define READ(fd,buf,nbytes) syscall(SYS_read, fd, buf, nbytes)
+#else
+# define READ(fd,buf,nbytes) read(fd, buf, nbytes)
+#endif
+
+void GC_read_dirty()
+{
+ unsigned long ps, np;
+ int nmaps;
+ ptr_t vaddr;
+ struct prasmap * map;
+ char * bufp;
+ ptr_t current_addr, limit;
+ int i;
+int dummy;
+
+ BZERO(GC_grungy_pages, (sizeof GC_grungy_pages));
+
+ bufp = GC_proc_buf;
+ if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
+# ifdef PRINTSTATS
+ GC_printf1("/proc read failed: GC_proc_buf_size = %lu\n",
+ GC_proc_buf_size);
+# endif
+ {
+ /* Retry with larger buffer. */
+ word new_size = 2 * GC_proc_buf_size;
+ char * new_buf = GC_scratch_alloc(new_size);
+
+ if (new_buf != 0) {
+ GC_proc_buf = bufp = new_buf;
+ GC_proc_buf_size = new_size;
+ }
+ if (syscall(SYS_read, GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
+ WARN("Insufficient space for /proc read\n", 0);
+ /* Punt: */
+ memset(GC_grungy_pages, 0xff, sizeof (page_hash_table));
+ memset(GC_written_pages, 0xff, sizeof(page_hash_table));
+# ifdef SOLARIS_THREADS
+ BZERO(GC_fresh_pages,
+ MAX_FRESH_PAGES * sizeof (struct hblk *));
+# endif
+ return;
+ }
+ }
+ }
+ /* Copy dirty bits into GC_grungy_pages */
+ nmaps = ((struct prpageheader *)bufp) -> pr_nmap;
+ /* printf( "nmaps = %d, PG_REFERENCED = %d, PG_MODIFIED = %d\n",
+ nmaps, PG_REFERENCED, PG_MODIFIED); */
+ bufp = bufp + sizeof(struct prpageheader);
+ for (i = 0; i < nmaps; i++) {
+ map = (struct prasmap *)bufp;
+ vaddr = (ptr_t)(map -> pr_vaddr);
+ ps = map -> pr_pagesize;
+ np = map -> pr_npage;
+ /* printf("vaddr = 0x%X, ps = 0x%X, np = 0x%X\n", vaddr, ps, np); */
+ limit = vaddr + ps * np;
+ bufp += sizeof (struct prasmap);
+ for (current_addr = vaddr;
+ current_addr < limit; current_addr += ps){
+ if ((*bufp++) & PG_MODIFIED) {
+ register struct hblk * h = (struct hblk *) current_addr;
+
+ while ((ptr_t)h < current_addr + ps) {
+ register word index = PHT_HASH(h);
+
+ set_pht_entry_from_index(GC_grungy_pages, index);
+# ifdef SOLARIS_THREADS
+ {
+ register int slot = FRESH_PAGE_SLOT(h);
+
+ if (GC_fresh_pages[slot] == h) {
+ GC_fresh_pages[slot] = 0;
+ }
+ }
+# endif
+ h++;
+ }
+ }
+ }
+ bufp += sizeof(long) - 1;
+ bufp = (char *)((unsigned long)bufp & ~(sizeof(long)-1));
+ }
+ /* Update GC_written_pages. */
+ GC_or_pages(GC_written_pages, GC_grungy_pages);
+# ifdef SOLARIS_THREADS
+ /* Make sure that old stacks are considered completely clean */
+ /* unless written again. */
+ GC_old_stacks_are_fresh();
+# endif
+}
+
+#undef READ
+
+GC_bool GC_page_was_dirty(h)
+struct hblk *h;
+{
+ register word index = PHT_HASH(h);
+ register GC_bool result;
+
+ result = get_pht_entry_from_index(GC_grungy_pages, index);
+# ifdef SOLARIS_THREADS
+ if (result && PAGE_IS_FRESH(h)) result = FALSE;
+ /* This happens only if page was declared fresh since */
+ /* the read_dirty call, e.g. because it's in an unused */
+ /* thread stack. It's OK to treat it as clean, in */
+ /* that case. And it's consistent with */
+ /* GC_page_was_ever_dirty. */
+# endif
+ return(result);
+}
+
+GC_bool GC_page_was_ever_dirty(h)
+struct hblk *h;
+{
+ register word index = PHT_HASH(h);
+ register GC_bool result;
+
+ result = get_pht_entry_from_index(GC_written_pages, index);
+# ifdef SOLARIS_THREADS
+ if (result && PAGE_IS_FRESH(h)) result = FALSE;
+# endif
+ return(result);
+}
+
+/* Caller holds allocation lock. */
+void GC_is_fresh(h, n)
+struct hblk *h;
+word n;
+{
+
+ register word index;
+
+# ifdef SOLARIS_THREADS
+ register word i;
+
+ if (GC_fresh_pages != 0) {
+ for (i = 0; i < n; i++) {
+ ADD_FRESH_PAGE(h + i);
+ }
+ }
+# endif
+}
+
+# endif /* PROC_VDB */
+
+
+# ifdef PCR_VDB
+
+# include "vd/PCR_VD.h"
+
+# define NPAGES (32*1024) /* 128 MB */
+
+PCR_VD_DB GC_grungy_bits[NPAGES];
+
+ptr_t GC_vd_base; /* Address corresponding to GC_grungy_bits[0] */
+ /* HBLKSIZE aligned. */
+
+void GC_dirty_init()
+{
+ GC_dirty_maintained = TRUE;
+ /* For the time being, we assume the heap generally grows up */
+ GC_vd_base = GC_heap_sects[0].hs_start;
+ if (GC_vd_base == 0) {
+ ABORT("Bad initial heap segment");
+ }
+ if (PCR_VD_Start(HBLKSIZE, GC_vd_base, NPAGES*HBLKSIZE)
+ != PCR_ERes_okay) {
+ ABORT("dirty bit initialization failed");
+ }
+}
+
+void GC_read_dirty()
+{
+ /* lazily enable dirty bits on newly added heap sects */
+ {
+ static int onhs = 0;
+ int nhs = GC_n_heap_sects;
+ for( ; onhs < nhs; onhs++ ) {
+ PCR_VD_WriteProtectEnable(
+ GC_heap_sects[onhs].hs_start,
+ GC_heap_sects[onhs].hs_bytes );
+ }
+ }
+
+
+ if (PCR_VD_Clear(GC_vd_base, NPAGES*HBLKSIZE, GC_grungy_bits)
+ != PCR_ERes_okay) {
+ ABORT("dirty bit read failed");
+ }
+}
+
+GC_bool GC_page_was_dirty(h)
+struct hblk *h;
+{
+ if((ptr_t)h < GC_vd_base || (ptr_t)h >= GC_vd_base + NPAGES*HBLKSIZE) {
+ return(TRUE);
+ }
+ return(GC_grungy_bits[h - (struct hblk *)GC_vd_base] & PCR_VD_DB_dirtyBit);
+}
+
+/*ARGSUSED*/
+void GC_write_hint(h)
+struct hblk *h;
+{
+ PCR_VD_WriteProtectDisable(h, HBLKSIZE);
+ PCR_VD_WriteProtectEnable(h, HBLKSIZE);
+}
+
+# endif /* PCR_VDB */
+
+/*
+ * Call stack save code for debugging.
+ * Should probably be in mach_dep.c, but that requires reorganization.
+ */
+#if defined(SPARC) && !defined(LINUX)
+# if defined(SUNOS4)
+# include <machine/frame.h>
+# else
+# if defined (DRSNX)
+# include <sys/sparc/frame.h>
+# else
+# if defined(OPENBSD)
+# include <frame.h>
+# else
+# include <sys/frame.h>
+# endif
+# endif
+# endif
+# if NARGS > 6
+ --> We only know how to to get the first 6 arguments
+# endif
+
+#ifdef SAVE_CALL_CHAIN
+/* Fill in the pc and argument information for up to NFRAMES of my */
+/* callers. Ignore my frame and my callers frame. */
+
+#ifdef OPENBSD
+# define FR_SAVFP fr_fp
+# define FR_SAVPC fr_pc
+#else
+# define FR_SAVFP fr_savfp
+# define FR_SAVPC fr_savpc
+#endif
+
+void GC_save_callers (info)
+struct callinfo info[NFRAMES];
+{
+ struct frame *frame;
+ struct frame *fp;
+ int nframes = 0;
+ word GC_save_regs_in_stack();
+
+ frame = (struct frame *) GC_save_regs_in_stack ();
+
+ for (fp = frame -> FR_SAVFP; fp != 0 && nframes < NFRAMES;
+ fp = fp -> FR_SAVFP, nframes++) {
+ register int i;
+
+ info[nframes].ci_pc = fp->FR_SAVPC;
+ for (i = 0; i < NARGS; i++) {
+ info[nframes].ci_arg[i] = ~(fp->fr_arg[i]);
+ }
+ }
+ if (nframes < NFRAMES) info[nframes].ci_pc = 0;
+}
+
+#endif /* SAVE_CALL_CHAIN */
+#endif /* SPARC */
+
+
+