/* * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers * Copyright (c) 1991-1994 by Xerox Corporation. All rights reserved. * Copyright (c) 1996-1999 by Silicon Graphics. All rights reserved. * Copyright (c) 1999 by Hewlett-Packard Company. All rights reserved. * * * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED * OR IMPLIED. ANY USE IS AT YOUR OWN RISK. * * Permission is hereby granted to use or copy this program * for any purpose, provided the above notices are retained on all copies. * Permission to modify the code and to distribute modified code is granted, * provided the above notices are retained, and a notice that the code was * modified is included with the above copyright notice. */ #ifndef GC_LOCKS_H #define GC_LOCKS_H /* * Mutual exclusion between allocator/collector routines. * Needed if there is more than one allocator thread. * FASTLOCK() is assumed to try to acquire the lock in a cheap and * dirty way that is acceptable for a few instructions, e.g. by * inhibiting preemption. This is assumed to have succeeded only * if a subsequent call to FASTLOCK_SUCCEEDED() returns TRUE. * FASTUNLOCK() is called whether or not FASTLOCK_SUCCEEDED(). * If signals cannot be tolerated with the FASTLOCK held, then * FASTLOCK should disable signals. The code executed under * FASTLOCK is otherwise immune to interruption, provided it is * not restarted. * DCL_LOCK_STATE declares any local variables needed by LOCK and UNLOCK * and/or DISABLE_SIGNALS and ENABLE_SIGNALS and/or FASTLOCK. * (There is currently no equivalent for FASTLOCK.) * * In the PARALLEL_MARK case, we also need to define a number of * other inline finctions here: * GC_bool GC_compare_and_exchange( volatile GC_word *addr, * GC_word old, GC_word new ) * GC_word GC_atomic_add( volatile GC_word *addr, GC_word how_much ) * void GC_memory_barrier( ) * */ # ifdef THREADS void GC_noop1 GC_PROTO((word)); # ifdef PCR_OBSOLETE /* Faster, but broken with multiple lwp's */ # include "th/PCR_Th.h" # include "th/PCR_ThCrSec.h" extern struct PCR_Th_MLRep GC_allocate_ml; # define DCL_LOCK_STATE PCR_sigset_t GC_old_sig_mask # define LOCK() PCR_Th_ML_Acquire(&GC_allocate_ml) # define UNLOCK() PCR_Th_ML_Release(&GC_allocate_ml) # define UNLOCK() PCR_Th_ML_Release(&GC_allocate_ml) # define FASTLOCK() PCR_ThCrSec_EnterSys() /* Here we cheat (a lot): */ # define FASTLOCK_SUCCEEDED() (*(int *)(&GC_allocate_ml) == 0) /* TRUE if nobody currently holds the lock */ # define FASTUNLOCK() PCR_ThCrSec_ExitSys() # endif # ifdef PCR # include <base/PCR_Base.h> # include <th/PCR_Th.h> extern PCR_Th_ML GC_allocate_ml; # define DCL_LOCK_STATE \ PCR_ERes GC_fastLockRes; PCR_sigset_t GC_old_sig_mask # define LOCK() PCR_Th_ML_Acquire(&GC_allocate_ml) # define UNLOCK() PCR_Th_ML_Release(&GC_allocate_ml) # define FASTLOCK() (GC_fastLockRes = PCR_Th_ML_Try(&GC_allocate_ml)) # define FASTLOCK_SUCCEEDED() (GC_fastLockRes == PCR_ERes_okay) # define FASTUNLOCK() {\ if( FASTLOCK_SUCCEEDED() ) PCR_Th_ML_Release(&GC_allocate_ml); } # endif # ifdef SRC_M3 extern GC_word RT0u__inCritical; # define LOCK() RT0u__inCritical++ # define UNLOCK() RT0u__inCritical-- # endif # ifdef SOLARIS_THREADS # include <thread.h> # include <signal.h> extern mutex_t GC_allocate_ml; # define LOCK() mutex_lock(&GC_allocate_ml); # define UNLOCK() mutex_unlock(&GC_allocate_ml); # endif /* Try to define GC_TEST_AND_SET and a matching GC_CLEAR for spin lock */ /* acquisition and release. We need this for correct operation of the */ /* incremental GC. */ # ifdef __GNUC__ # if defined(I386) inline static int GC_test_and_set(volatile unsigned int *addr) { int oldval; /* Note: the "xchg" instruction does not need a "lock" prefix */ __asm__ __volatile__("xchgl %0, %1" : "=r"(oldval), "=m"(*(addr)) : "0"(1), "m"(*(addr)) : "memory"); return oldval; } # define GC_TEST_AND_SET_DEFINED # endif # if defined(IA64) inline static int GC_test_and_set(volatile unsigned int *addr) { long oldval, n = 1; __asm__ __volatile__("xchg4 %0=%1,%2" : "=r"(oldval), "=m"(*addr) : "r"(n), "1"(*addr) : "memory"); return oldval; } # define GC_TEST_AND_SET_DEFINED /* Should this handle post-increment addressing?? */ inline static void GC_clear(volatile unsigned int *addr) { __asm__ __volatile__("st4.rel %0=r0" : "=m" (*addr) : : "memory"); } # define GC_CLEAR_DEFINED # endif # ifdef SPARC inline static int GC_test_and_set(volatile unsigned int *addr) { int oldval; __asm__ __volatile__("ldstub %1,%0" : "=r"(oldval), "=m"(*addr) : "m"(*addr) : "memory"); return oldval; } # define GC_TEST_AND_SET_DEFINED # endif # ifdef M68K /* Contributed by Tony Mantler. I'm not sure how well it was */ /* tested. */ inline static int GC_test_and_set(volatile unsigned int *addr) { char oldval; /* this must be no longer than 8 bits */ /* The return value is semi-phony. */ /* 'tas' sets bit 7 while the return */ /* value pretends bit 0 was set */ __asm__ __volatile__( "tas %1@; sne %0; negb %0" : "=d" (oldval) : "a" (addr) : "memory"); return oldval; } # define GC_TEST_AND_SET_DEFINED # endif # if defined(POWERPC) inline static int GC_test_and_set(volatile unsigned int *addr) { int oldval; int temp = 1; // locked value __asm__ __volatile__( "1:\tlwarx %0,0,%3\n" // load and reserve "\tcmpwi %0, 0\n" // if load is "\tbne 2f\n" // non-zero, return already set "\tstwcx. %2,0,%1\n" // else store conditional "\tbne- 1b\n" // retry if lost reservation "2:\t\n" // oldval is zero if we set : "=&r"(oldval), "=p"(addr) : "r"(temp), "1"(addr) : "memory"); return (int)oldval; } # define GC_TEST_AND_SET_DEFINED inline static void GC_clear(volatile unsigned int *addr) { __asm__ __volatile__("eieio" ::: "memory"); *(addr) = 0; } # define GC_CLEAR_DEFINED # endif # if defined(ALPHA) inline static int GC_test_and_set(volatile unsigned int * addr) { unsigned long oldvalue; unsigned long temp; __asm__ __volatile__( "1: ldl_l %0,%1\n" " and %0,%3,%2\n" " bne %2,2f\n" " xor %0,%3,%0\n" " stl_c %0,%1\n" " beq %0,3f\n" " mb\n" "2:\n" ".section .text2,\"ax\"\n" "3: br 1b\n" ".previous" :"=&r" (temp), "=m" (*addr), "=&r" (oldvalue) :"Ir" (1), "m" (*addr) :"memory"); return oldvalue; } # define GC_TEST_AND_SET_DEFINED /* Should probably also define GC_clear, since it needs */ /* a memory barrier ?? */ # endif /* ALPHA */ # ifdef ARM32 inline static int GC_test_and_set(volatile unsigned int *addr) { int oldval; /* SWP on ARM is very similar to XCHG on x86. Doesn't lock the * bus because there are no SMP ARM machines. If/when there are, * this code will likely need to be updated. */ /* See linuxthreads/sysdeps/arm/pt-machine.h in glibc-2.1 */ __asm__ __volatile__("swp %0, %1, [%2]" : "=r"(oldval) : "r"(1), "r"(addr) : "memory"); return oldval; } # define GC_TEST_AND_SET_DEFINED # endif /* ARM32 */ # endif /* __GNUC__ */ # if (defined(ALPHA) && !defined(__GNUC__)) # define GC_test_and_set(addr) __cxx_test_and_set_atomic(addr, 1) # define GC_TEST_AND_SET_DEFINED # endif # if defined(MSWIN32) # define GC_test_and_set(addr) InterlockedExchange((LPLONG)addr,1) # define GC_TEST_AND_SET_DEFINED # endif # ifdef MIPS # if __mips < 3 || !(defined (_ABIN32) || defined(_ABI64)) \ || !defined(_COMPILER_VERSION) || _COMPILER_VERSION < 700 # define GC_test_and_set(addr, v) test_and_set(addr,v) # else # define GC_test_and_set(addr, v) __test_and_set(addr,v) # define GC_clear(addr) __lock_release(addr); # define GC_CLEAR_DEFINED # endif # define GC_TEST_AND_SET_DEFINED # endif /* MIPS */ # if 0 /* defined(HP_PA) */ /* The official recommendation seems to be to not use ldcw from */ /* user mode. Since multithreaded incremental collection doesn't */ /* work anyway on HP_PA, this shouldn't be a major loss. */ /* "set" means 0 and "clear" means 1 here. */ # define GC_test_and_set(addr) !GC_test_and_clear(addr); # define GC_TEST_AND_SET_DEFINED # define GC_clear(addr) GC_noop1((word)(addr)); *(volatile unsigned int *)addr = 1; /* The above needs a memory barrier! */ # define GC_CLEAR_DEFINED # endif # if defined(GC_TEST_AND_SET_DEFINED) && !defined(GC_CLEAR_DEFINED) # ifdef __GNUC__ inline static void GC_clear(volatile unsigned int *addr) { /* Try to discourage gcc from moving anything past this. */ __asm__ __volatile__(" " : : : "memory"); *(addr) = 0; } # else /* The function call in the following should prevent the */ /* compiler from moving assignments to below the UNLOCK. */ # define GC_clear(addr) GC_noop1((word)(addr)); \ *((volatile unsigned int *)(addr)) = 0; # endif # define GC_CLEAR_DEFINED # endif /* !GC_CLEAR_DEFINED */ # if !defined(GC_TEST_AND_SET_DEFINED) # define USE_PTHREAD_LOCKS # endif # if defined(LINUX_THREADS) || defined(OSF1_THREADS) \ || defined(HPUX_THREADS) # define NO_THREAD (pthread_t)(-1) # include <pthread.h> # if defined(PARALLEL_MARK) /* We need compare-and-swap to update mark bits, where it's */ /* performance critical. If USE_MARK_BYTES is defined, it is */ /* no longer needed for this purpose. However we use it in */ /* either case to implement atomic fetch-and-add, though that's */ /* less performance critical, and could perhaps be done with */ /* a lock. */ # if defined(GENERIC_COMPARE_AND_SWAP) /* Probably not useful, except for debugging. */ /* We do use GENERIC_COMPARE_AND_SWAP on PA_RISC, but we */ /* minimize its use. */ extern pthread_mutex_t GC_compare_and_swap_lock; /* Note that if GC_word updates are not atomic, a concurrent */ /* reader should acquire GC_compare_and_swap_lock. On */ /* currently supported platforms, such updates are atomic. */ extern GC_bool GC_compare_and_exchange(volatile GC_word *addr, GC_word old, GC_word new_val); # endif /* GENERIC_COMPARE_AND_SWAP */ # if defined(I386) # if !defined(GENERIC_COMPARE_AND_SWAP) /* Returns TRUE if the comparison succeeded. */ inline static GC_bool GC_compare_and_exchange(volatile GC_word *addr, GC_word old, GC_word new_val) { char result; __asm__ __volatile__("lock; cmpxchgl %2, %0; setz %1" : "=m"(*(addr)), "=r"(result) : "r" (new_val), "0"(*(addr)), "a"(old) : "memory"); return (GC_bool) result; } # endif /* !GENERIC_COMPARE_AND_SWAP */ inline static void GC_memory_write_barrier() { /* We believe the processor ensures at least processor */ /* consistent ordering. Thus a compiler barrier */ /* should suffice. */ __asm__ __volatile__("" : : : "memory"); } # endif /* I386 */ # if defined(IA64) # if !defined(GENERIC_COMPARE_AND_SWAP) inline static GC_bool GC_compare_and_exchange(volatile GC_word *addr, GC_word old, GC_word new_val) { unsigned long oldval; __asm__ __volatile__("mov ar.ccv=%4 ;; cmpxchg8.rel %0=%1,%2,ar.ccv" : "=r"(oldval), "=m"(*addr) : "r"(new_val), "1"(*addr), "r"(old) : "memory"); return (oldval == old); } # endif /* !GENERIC_COMPARE_AND_SWAP */ # if 0 /* Shouldn't be needed; we use volatile stores instead. */ inline static void GC_memory_write_barrier() { __asm__ __volatile__("mf" : : : "memory"); } # endif /* 0 */ # endif /* IA64 */ # if !defined(GENERIC_COMPARE_AND_SWAP) /* Returns the original value of *addr. */ inline static GC_word GC_atomic_add(volatile GC_word *addr, GC_word how_much) { GC_word old; do { old = *addr; } while (!GC_compare_and_exchange(addr, old, old+how_much)); return old; } # else /* GENERIC_COMPARE_AND_SWAP */ /* So long as a GC_word can be atomically updated, it should */ /* be OK to read *addr without a lock. */ extern GC_word GC_atomic_add(volatile GC_word *addr, GC_word how_much); # endif /* GENERIC_COMPARE_AND_SWAP */ # endif /* PARALLEL_MARK */ # if !defined(THREAD_LOCAL_ALLOC) && !defined(USE_PTHREAD_LOCKS) /* In the THREAD_LOCAL_ALLOC case, the allocation lock tends to */ /* be held for long periods, if it is held at all. Thus spinning */ /* and sleeping for fixed periods are likely to result in */ /* significant wasted time. We thus rely mostly on queued locks. */ # define USE_SPIN_LOCK extern volatile unsigned int GC_allocate_lock; extern void GC_lock(void); /* Allocation lock holder. Only set if acquired by client through */ /* GC_call_with_alloc_lock. */ # ifdef GC_ASSERTIONS # define LOCK() \ { if (GC_test_and_set(&GC_allocate_lock)) GC_lock(); \ SET_LOCK_HOLDER(); } # define UNLOCK() \ { GC_ASSERT(I_HOLD_LOCK()); UNSET_LOCK_HOLDER(); \ GC_clear(&GC_allocate_lock); } # else # define LOCK() \ { if (GC_test_and_set(&GC_allocate_lock)) GC_lock(); } # define UNLOCK() \ GC_clear(&GC_allocate_lock) # endif /* !GC_ASSERTIONS */ # if 0 /* Another alternative for OSF1 might be: */ # include <sys/mman.h> extern msemaphore GC_allocate_semaphore; # define LOCK() { if (msem_lock(&GC_allocate_semaphore, MSEM_IF_NOWAIT) \ != 0) GC_lock(); else GC_allocate_lock = 1; } /* The following is INCORRECT, since the memory model is too weak. */ /* Is this true? Presumably msem_unlock has the right semantics? */ /* - HB */ # define UNLOCK() { GC_allocate_lock = 0; \ msem_unlock(&GC_allocate_semaphore, 0); } # endif /* 0 */ # else /* THREAD_LOCAL_ALLOC || USE_PTHREAD_LOCKS */ # ifndef USE_PTHREAD_LOCKS # define USE_PTHREAD_LOCKS # endif # endif /* THREAD_LOCAL_ALLOC */ # ifdef USE_PTHREAD_LOCKS # include <pthread.h> extern pthread_mutex_t GC_allocate_ml; # ifdef GC_ASSERTIONS # define LOCK() \ { GC_lock(); \ SET_LOCK_HOLDER(); } # define UNLOCK() \ { GC_ASSERT(I_HOLD_LOCK()); UNSET_LOCK_HOLDER(); \ pthread_mutex_unlock(&GC_allocate_ml); } # else /* !GC_ASSERTIONS */ # define LOCK() \ { if (0 != pthread_mutex_trylock(&GC_allocate_ml)) GC_lock(); } # define UNLOCK() pthread_mutex_unlock(&GC_allocate_ml) # endif /* !GC_ASSERTIONS */ # endif /* USE_PTHREAD_LOCKS */ # define SET_LOCK_HOLDER() GC_lock_holder = pthread_self() # define UNSET_LOCK_HOLDER() GC_lock_holder = NO_THREAD # define I_HOLD_LOCK() (pthread_equal(GC_lock_holder, pthread_self())) extern VOLATILE GC_bool GC_collecting; # define ENTER_GC() GC_collecting = 1; # define EXIT_GC() GC_collecting = 0; extern void GC_lock(void); extern pthread_t GC_lock_holder; # ifdef GC_ASSERTIONS extern pthread_t GC_mark_lock_holder; # endif # endif /* LINUX_THREADS || OSF1_THREADS || HPUX_THREADS */ # if defined(IRIX_THREADS) # include <pthread.h> /* This probably should never be included, but I can't test */ /* on Irix anymore. */ # include <mutex.h> extern unsigned long GC_allocate_lock; /* This is not a mutex because mutexes that obey the (optional) */ /* POSIX scheduling rules are subject to convoys in high contention */ /* applications. This is basically a spin lock. */ extern pthread_t GC_lock_holder; extern void GC_lock(void); /* Allocation lock holder. Only set if acquired by client through */ /* GC_call_with_alloc_lock. */ # define SET_LOCK_HOLDER() GC_lock_holder = pthread_self() # define NO_THREAD (pthread_t)(-1) # define UNSET_LOCK_HOLDER() GC_lock_holder = NO_THREAD # define I_HOLD_LOCK() (pthread_equal(GC_lock_holder, pthread_self())) # define LOCK() { if (GC_test_and_set(&GC_allocate_lock, 1)) GC_lock(); } # define UNLOCK() GC_clear(&GC_allocate_lock); extern VOLATILE GC_bool GC_collecting; # define ENTER_GC() \ { \ GC_collecting = 1; \ } # define EXIT_GC() GC_collecting = 0; # endif /* IRIX_THREADS */ # ifdef WIN32_THREADS # include <windows.h> GC_API CRITICAL_SECTION GC_allocate_ml; # define LOCK() EnterCriticalSection(&GC_allocate_ml); # define UNLOCK() LeaveCriticalSection(&GC_allocate_ml); # endif # ifndef SET_LOCK_HOLDER # define SET_LOCK_HOLDER() # define UNSET_LOCK_HOLDER() # define I_HOLD_LOCK() FALSE /* Used on platforms were locks can be reacquired, */ /* so it doesn't matter if we lie. */ # endif # else /* !THREADS */ # define LOCK() # define UNLOCK() # endif /* !THREADS */ # ifndef SET_LOCK_HOLDER # define SET_LOCK_HOLDER() # define UNSET_LOCK_HOLDER() # define I_HOLD_LOCK() FALSE /* Used on platforms were locks can be reacquired, */ /* so it doesn't matter if we lie. */ # endif # ifndef ENTER_GC # define ENTER_GC() # define EXIT_GC() # endif # ifndef DCL_LOCK_STATE # define DCL_LOCK_STATE # endif # ifndef FASTLOCK # define FASTLOCK() LOCK() # define FASTLOCK_SUCCEEDED() TRUE # define FASTUNLOCK() UNLOCK() # endif #endif /* GC_LOCKS_H */