/* $Id: matrix.c,v 1.8 2003/04/07 16:27:10 ukai Exp $ */ /* * matrix.h, matrix.c: Liner equation solver using LU decomposition. * * by K.Okabe Aug. 1999 * * LUfactor, LUsolve, Usolve and Lsolve, are based on the functions in * Meschach Library Version 1.2b. */ /************************************************************************** ** ** Copyright (C) 1993 David E. Steward & Zbigniew Leyk, all rights reserved. ** ** Meschach Library ** ** This Meschach Library is provided "as is" without any express ** or implied warranty of any kind with respect to this software. ** In particular the authors shall not be liable for any direct, ** indirect, special, incidental or consequential damages arising ** in any way from use of the software. ** ** Everyone is granted permission to copy, modify and redistribute this ** Meschach Library, provided: ** 1. All copies contain this copyright notice. ** 2. All modified copies shall carry a notice stating who ** made the last modification and the date of such modification. ** 3. No charge is made for this software or works derived from it. ** This clause shall not be construed as constraining other software ** distributed on the same medium as this software, nor is a ** distribution fee considered a charge. ** ***************************************************************************/ #include "config.h" #include "matrix.h" #include "alloc.h" /* * Macros from "fm.h". */ #define SWAPD(a,b) { double tmp = a; a = b; b = tmp; } #define SWAPI(a,b) { int tmp = a; a = b; b = tmp; } #ifdef HAVE_FLOAT_H #include <float.h> #endif /* not HAVE_FLOAT_H */ #if defined(DBL_MAX) static double Tiny = 10.0 / DBL_MAX; #elif defined(FLT_MAX) static double Tiny = 10.0 / FLT_MAX; #else /* not defined(FLT_MAX) */ static double Tiny = 1.0e-30; #endif /* not defined(FLT_MAX */ /* * LUfactor -- gaussian elimination with scaled partial pivoting * -- Note: returns LU matrix which is A. */ int LUfactor(Matrix A, int *indexarray) { int dim = A->dim, i, j, k, i_max, k_max; Vector scale; double mx, tmp; scale = new_vector(dim); for (i = 0; i < dim; i++) indexarray[i] = i; for (i = 0; i < dim; i++) { mx = 0.; for (j = 0; j < dim; j++) { tmp = fabs(M_VAL(A, i, j)); if (mx < tmp) mx = tmp; } scale->ve[i] = mx; } k_max = dim - 1; for (k = 0; k < k_max; k++) { mx = 0.; i_max = -1; for (i = k; i < dim; i++) { if (fabs(scale->ve[i]) >= Tiny * fabs(M_VAL(A, i, k))) { tmp = fabs(M_VAL(A, i, k)) / scale->ve[i]; if (mx < tmp) { mx = tmp; i_max = i; } } } if (i_max == -1) { M_VAL(A, k, k) = 0.; continue; } if (i_max != k) { SWAPI(indexarray[i_max], indexarray[k]); for (j = 0; j < dim; j++) SWAPD(M_VAL(A, i_max, j), M_VAL(A, k, j)); } for (i = k + 1; i < dim; i++) { tmp = M_VAL(A, i, k) = M_VAL(A, i, k) / M_VAL(A, k, k); for (j = k + 1; j < dim; j++) M_VAL(A, i, j) -= tmp * M_VAL(A, k, j); } } return 0; } /* * LUsolve -- given an LU factorisation in A, solve Ax=b. */ int LUsolve(Matrix A, int *indexarray, Vector b, Vector x) { int i, dim = A->dim; for (i = 0; i < dim; i++) x->ve[i] = b->ve[indexarray[i]]; if (Lsolve(A, x, x, 1.) == -1 || Usolve(A, x, x, 0.) == -1) return -1; return 0; } /* m_inverse -- returns inverse of A, provided A is not too rank deficient * -- uses LU factorisation */ #if 0 Matrix m_inverse(Matrix A, Matrix out) { int *indexarray = NewAtom_N(int, A->dim); Matrix A1 = new_matrix(A->dim); m_copy(A, A1); LUfactor(A1, indexarray); return LUinverse(A1, indexarray, out); } #endif /* 0 */ Matrix LUinverse(Matrix A, int *indexarray, Matrix out) { int i, j, dim = A->dim; Vector tmp, tmp2; if (!out) out = new_matrix(dim); tmp = new_vector(dim); tmp2 = new_vector(dim); for (i = 0; i < dim; i++) { for (j = 0; j < dim; j++) tmp->ve[j] = 0.; tmp->ve[i] = 1.; if (LUsolve(A, indexarray, tmp, tmp2) == -1) return NULL; for (j = 0; j < dim; j++) M_VAL(out, j, i) = tmp2->ve[j]; } return out; } /* * Usolve -- back substitution with optional over-riding diagonal * -- can be in-situ but doesn't need to be. */ int Usolve(Matrix mat, Vector b, Vector out, double diag) { int i, j, i_lim, dim = mat->dim; double sum; for (i = dim - 1; i >= 0; i--) { if (b->ve[i] != 0.) break; else out->ve[i] = 0.; } i_lim = i; for (; i >= 0; i--) { sum = b->ve[i]; for (j = i + 1; j <= i_lim; j++) sum -= M_VAL(mat, i, j) * out->ve[j]; if (diag == 0.) { if (fabs(M_VAL(mat, i, i)) <= Tiny * fabs(sum)) return -1; else out->ve[i] = sum / M_VAL(mat, i, i); } else out->ve[i] = sum / diag; } return 0; } /* * Lsolve -- forward elimination with (optional) default diagonal value. */ int Lsolve(Matrix mat, Vector b, Vector out, double diag) { int i, j, i_lim, dim = mat->dim; double sum; for (i = 0; i < dim; i++) { if (b->ve[i] != 0.) break; else out->ve[i] = 0.; } i_lim = i; for (; i < dim; i++) { sum = b->ve[i]; for (j = i_lim; j < i; j++) sum -= M_VAL(mat, i, j) * out->ve[j]; if (diag == 0.) { if (fabs(M_VAL(mat, i, i)) <= Tiny * fabs(sum)) return -1; else out->ve[i] = sum / M_VAL(mat, i, i); } else out->ve[i] = sum / diag; } return 0; } /* * new_matrix -- generate a nxn matrix. */ Matrix new_matrix(int n) { Matrix mat; mat = New(struct matrix); mat->dim = n; mat->me = NewAtom_N(double, n * n); return mat; } /* * new_matrix -- generate a n-dimension vector. */ Vector new_vector(int n) { Vector vec; vec = New(struct vector); vec->dim = n; vec->ve = NewAtom_N(double, n); return vec; }