/***************************************************Project Mutator****************************************************/
//-*-c++-*-
/*first line intentionally left blank.*/
/*the source code for SaferCPP's automatic refactoring of C/C++ arrays.*/
/*Copyright (C) 2017 Noah L.,Farzad Sadeghi
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.*/
/*code structure inspired by Eli Bendersky's tutorial on Rewriters.*/
/**********************************************************************************************************************/
/**********************************************************************************************************************/
/*included modules*/
/*Project Headers*/
#include "safercpp-arr.h"
#include "../mutator_aux.h"
/*Standard headers*/
#include <string>
#include <iostream>
#include <string>
#include <vector>
#include <map>
#include <algorithm>
#include <locale>
/*Clang Headers*/
#include "clang/AST/AST.h"
#include "clang/AST/ASTConsumer.h"
#include "clang/ASTMatchers/ASTMatchers.h"
#include "clang/ASTMatchers/ASTMatchFinder.h"
#include "clang/Frontend/CompilerInstance.h"
#include "clang/Frontend/FrontendActions.h"
#include "clang/Lex/Lexer.h"
#include "clang/Tooling/CommonOptionsParser.h"
#include "clang/Tooling/Tooling.h"
#include "clang/Rewrite/Core/Rewriter.h"
/*LLVM Headers*/
#include "llvm/Support/raw_ostream.h"
#include "llvm/IR/Function.h"
/**********************************************************************************************************************/
/*used namespaces*/
using namespace llvm;
using namespace clang;
using namespace clang::ast_matchers;
using namespace clang::driver;
using namespace clang::tooling;
/**********************************************************************************************************************/
static llvm::cl::OptionCategory MatcherSampleCategory("TBD");
cl::opt<bool> CheckSystemHeader("SysHeader", cl::desc("safercpp will run through System Headers"), cl::init(false), cl::cat(MatcherSampleCategory), cl::ZeroOrMore);
cl::opt<bool> MainFileOnly("MainOnly", cl::desc("safercpp will only report the results that reside in the main file"), cl::init(false), cl::cat(MatcherSampleCategory), cl::ZeroOrMore);
cl::opt<bool> SafeSubset("SafeSubset", cl::desc("safercpp will check for elements outside of the (memory) safe subset of the language"), cl::init(true), cl::cat(MatcherSampleCategory), cl::ZeroOrMore);
cl::opt<bool> ConvertToSCPP("ConvertToSCPP", cl::desc("safercpp will translate the source to a (memory) safe subset of the language"), cl::init(false), cl::cat(MatcherSampleCategory), cl::ZeroOrMore);
/**********************************************************************************************************************/
SourceRange nice_source_range(const SourceRange& sr, Rewriter &Rewrite) {
SourceLocation SL = sr.getBegin();
SourceLocation SLE = sr.getEnd();
if (SL.isMacroID() || SLE.isMacroID()) {
int q = 5;
}
SL = Devi::SourceLocationHasMacro(SL, Rewrite, "start");
SLE = Devi::SourceLocationHasMacro(SLE, Rewrite, "end");
return SourceRange(SL, SLE);
}
bool filtered_out_by_location(const ast_matchers::MatchFinder::MatchResult &MR, SourceLocation SL) {
bool retval = false;
if (Devi::IsTheMatchInSysHeader(CheckSystemHeader, MR, SL)) {
retval = true;
} else if (!Devi::IsTheMatchInMainFile(MainFileOnly, MR, SL)) {
retval = true;
} else {
bool filename_is_invalid = false;
std::string full_path_name = MR.SourceManager->getBufferName(SL, &filename_is_invalid);
std::string filename = full_path_name;
auto last_slash_pos = full_path_name.find_last_of('/');
if (std::string::npos != last_slash_pos) {
if (last_slash_pos + 1 < full_path_name.size()) {
filename = full_path_name.substr(last_slash_pos+1);
} else {
filename = "";
}
}
static const std::string mse_str = "mse";
if (0 == filename.compare(0, mse_str.size(), mse_str)) {
retval = true;
}
}
return retval;
}
static std::string with_whitespace_removed(const std::string& str) {
std::string retval = str;
retval.erase(std::remove_if(retval.begin(), retval.end(), isspace), retval.end());
return retval;
}
static std::string with_newlines_removed(const std::string& str) {
std::string retval = str;
auto riter1 = retval.rbegin();
while (retval.rend() != riter1) {
if ('\n' == *riter1) {
auto riter2 = riter1;
riter2++;
retval.erase(riter1.base()--);
while (retval.rend() != riter2) {
/* look for and remove 'continued on the next line' backslash if present. */
if ('\\' == (*riter2)) {
riter1++;
retval.erase(riter2.base()--);
break;
} else if (!std::isspace(*riter2)) {
break;
}
riter2++;
}
}
riter1++;
}
return retval;
}
/* No longer used. This function extracts the text of individual declarations when multiple
* pointers are declared in the same declaration statement. */
static std::vector<std::string> f_declared_object_strings(const std::string& decl_stmt_str) {
std::vector<std::string> retval;
auto nice_decl_stmt_str = with_newlines_removed(decl_stmt_str);
auto semicolon_position = std::string::npos;
for (size_t pos = 3; pos < nice_decl_stmt_str.size(); pos += 1) {
if (';' == nice_decl_stmt_str[pos]) {
semicolon_position = pos;
}
}
if (std::string::npos == semicolon_position) {
assert(false);
return retval;
}
std::vector<size_t> delimiter_positions;
for (size_t pos = 3; ((pos < nice_decl_stmt_str.size()) && (pos < semicolon_position)); pos += 1) {
if (',' == nice_decl_stmt_str[pos]) {
delimiter_positions.push_back(pos);
}
}
delimiter_positions.push_back(semicolon_position);
auto first_delimiter_pos = delimiter_positions[0];
{
auto pos1 = first_delimiter_pos - 1;
auto pos2 = pos1;
bool nonspace_found = false;
while ((2 <= pos1) && (!nonspace_found)) {
if (!std::isspace(nice_decl_stmt_str[pos1])) {
pos2 = pos1 + 1;
nonspace_found = true;
}
pos1 -= 1;
}
if (!nonspace_found) {
assert(false);
return retval;
}
bool space_found = false;
while ((1 <= pos1) && (!space_found)) {
if (std::isspace(nice_decl_stmt_str[pos1])) {
space_found = true;
}
pos1 -= 1;
}
if (!space_found) {
assert(false);
return retval;
}
pos1 += 2;
std::string first_declaration_string = nice_decl_stmt_str.substr(pos1, pos2 - pos1);
retval.push_back(first_declaration_string);
}
{
size_t delimiter_index = 0;
while (delimiter_positions.size() > (delimiter_index + 1)) {
if (!(delimiter_positions[delimiter_index] + 1 < delimiter_positions[(delimiter_index + 1)])) {
//assert(false);
} else {
std::string declaration_string = nice_decl_stmt_str.substr(delimiter_positions[delimiter_index] + 1, delimiter_positions[(delimiter_index + 1)] - (delimiter_positions[delimiter_index] + 1));
retval.push_back(declaration_string);
}
delimiter_index += 1;
}
}
return retval;
}
std::string tolowerstr(const std::string& a) {
std::string retval;
for (const auto& ch : a) {
retval += tolower(ch);
}
return retval;
}
bool string_begins_with(const std::string& s1, const std::string& prefix) {
return (0 == s1.compare(0, prefix.length(), prefix));
}
/* This function returns a list of individual declarations contained in the same declaration statement
* as the given declaration. (eg.: "int a, b = 3, *c;" ) */
static std::vector<const DeclaratorDecl*> IndividualDeclaratorDecls(const DeclaratorDecl* DD, Rewriter &Rewrite) {
/* There's probably a more efficient way to do this, but this implementation seems to work. */
std::vector<const DeclaratorDecl*> retval;
if (!DD) {
assert(false);
return retval;
}
auto SR = nice_source_range(DD->getSourceRange(), Rewrite);
SourceLocation SL = SR.getBegin();
std::string source_text;
if (SR.isValid()) {
source_text = Rewrite.getRewrittenText(SR);
} else {
return retval;
}
auto decl_context = DD->getDeclContext();
if ((!decl_context) || (!SL.isValid())) {
assert(false);
retval.push_back(DD);
} else {
for (auto decl_iter = decl_context->decls_begin(); decl_iter != decl_context->decls_end(); decl_iter++) {
auto decl = (*decl_iter);
auto l_DD = dynamic_cast<const DeclaratorDecl*>(decl);
if (l_DD) {
auto DDSR = nice_source_range(l_DD->getSourceRange(), Rewrite);
SourceLocation l_SL = DDSR.getBegin();
if (l_SL == SL) {
retval.push_back(l_DD);
}
}
}
}
if (0 == retval.size()) {
//assert(false);
int q = 7;
}
return retval;
}
/* This class specifies a declaration and a level of "indirection"(/"dereference") relative to the declared
* object. For example, given the declaration "int **var1[5];", (*var1) and (**var1) are 1 and 2 "levels of
* indirection", respectively, relative to var1. */
class CDDeclIndirection {
public:
CDDeclIndirection(const clang::DeclaratorDecl& ddecl_cref, size_t indirection_level = 0) :
m_ddecl_cptr(&ddecl_cref), m_indirection_level(indirection_level) {}
CDDeclIndirection(const CDDeclIndirection&) = default;
bool operator <(const CDDeclIndirection &rhs) const {
if (m_ddecl_cptr == rhs.m_ddecl_cptr) {
return (m_indirection_level < rhs.m_indirection_level);
} else {
return (m_ddecl_cptr < rhs.m_ddecl_cptr);
}
}
const clang::DeclaratorDecl* m_ddecl_cptr = nullptr;
size_t m_indirection_level = 0;
};
class CIndirectionState {
public:
CIndirectionState(std::string original, std::string current, bool current_is_function_type = false)
: m_original(original), m_current(current), m_current_is_function_type(current_is_function_type) {}
CIndirectionState(const CIndirectionState& src) = default;
std::string m_original;
std::string m_current;
bool m_current_is_function_type = false;
std::vector<std::string> m_params_original;
std::vector<std::string> m_params_current;
};
class CIndirectionStateStack : public std::vector<CIndirectionState> {};
/* Given a type and an (empty) CIndirectionStateStack, this function will fill the stack with indications of
* whether each level of indirection (if any) of the type is of the pointer or the array variety. Pointers
* can, of course, function as arrays, but context is required to identify those situations. Such identification
* is not done in this function. It is done elsewhere. */
clang::QualType populateQTypeIndirectionStack(CIndirectionStateStack& stack, clang::QualType qtype, int depth = 0) {
bool current_is_function_type = false;
std::vector<const clang::DeclaratorDecl*> current_function_params;
if(qtype->isFunctionType()) {
auto type_class = qtype->getTypeClass();
if (clang::Type::Decayed == type_class) {
int q = 5;
} else if (clang::Type::FunctionNoProto == type_class) {
int q = 5;
} else if (clang::Type::FunctionProto == type_class) {
if (llvm::isa<const clang::FunctionProtoType>(qtype)) {
auto FNQT = llvm::cast<const clang::FunctionProtoType>(qtype);
if (FNQT) {
auto num_params = FNQT->getNumParams();
} else {
assert(false);
}
} else {
assert(false);
}
int q = 5;
}
if (llvm::isa<const clang::FunctionType>(qtype)) {
auto FNQT = llvm::cast<const clang::FunctionType>(qtype);
if (FNQT) {
current_is_function_type = true;
qtype = FNQT->getReturnType();
} else {
assert(false);
}
} else {
int q = 5;
}
}
std::string qtype_str = qtype.getAsString();
auto TP = qtype.getTypePtr();
if (TP->isArrayType()) {
auto type_class = qtype->getTypeClass();
if (clang::Type::Decayed == type_class) {
int q = 5;
} else if (clang::Type::ConstantArray == type_class) {
int q = 5;
}
const clang::ArrayType* ATP = TP->getAsArrayTypeUnsafe();
if (ATP) {
clang::QualType QT = ATP->getElementType();
auto l_TP = QT.getTypePtr();
auto l_type_str = QT.getAsString();
stack.push_back(CIndirectionState("native array", "native array"));
return populateQTypeIndirectionStack(stack, QT, depth+1);
} else {
assert(false);
}
} else if (qtype->isPointerType()) {
auto type_class = qtype->getTypeClass();
if (clang::Type::Decayed == type_class) {
int q = 5;
} else if (clang::Type::Pointer == type_class) {
int q = 5;
}
if (llvm::isa<const clang::PointerType>(qtype)) {
auto PQT = llvm::cast<const clang::PointerType>(qtype);
if (PQT) {
int q = 5;
} else {
int q = 5;
}
} else {
int q = 5;
}
clang::QualType QT = qtype->getPointeeType();
auto l_type_str = QT.getAsString();
stack.push_back(CIndirectionState("native pointer", "native pointer"));
return populateQTypeIndirectionStack(stack, QT, depth+1);
}
return qtype;
}
/* Given an expression (in the form of a clang::Stmt) and an (empty) (string) stack,
* this function will fill the stack with indications of whether each level of indirection
* (if any) (in the expression) is a pointer dereference or an array subscript. */
const clang::Expr* populateStmtIndirectionStack(std::vector<std::string>& stack, const clang::Stmt& stmt, int depth = 0) {
const clang::Expr* retval = nullptr;
const clang::Stmt* ST = &stmt;
auto stmt_class = ST->getStmtClass();
auto stmt_class_name = ST->getStmtClassName();
bool process_child_flag = false;
if (clang::Stmt::StmtClass::ArraySubscriptExprClass == stmt_class) {
stack.push_back("ArraySubscriptExpr");
process_child_flag = true;
} else if (clang::Stmt::StmtClass::UnaryOperatorClass == stmt_class) {
auto UO = llvm::cast<const clang::UnaryOperator>(ST);
if (UO) {
if (clang::UnaryOperatorKind::UO_Deref == UO->getOpcode()) {
stack.push_back("Deref");
process_child_flag = true;
} else {
auto QT = UO->getType();
const clang::Type* TP = QT.getTypePtr();
if (TP && TP->isPointerType()) {
if ((clang::UnaryOperatorKind::UO_PreInc == UO->getOpcode())
|| (clang::UnaryOperatorKind::UO_PostInc == UO->getOpcode())
|| (clang::UnaryOperatorKind::UO_PreDec == UO->getOpcode())
|| (clang::UnaryOperatorKind::UO_PostDec == UO->getOpcode())) {
/* Incrementing/decrementing a pointer type is pointer arithmetic and
* implies the pointer is being used as an array iterator. */
/* To do: modify the stack entry to reflect this. */
}
}
}
} else {
assert(false);
}
} else if ((clang::Stmt::StmtClass::ImplicitCastExprClass == stmt_class)) {
auto ICE = llvm::cast<const clang::ImplicitCastExpr>(ST);
if (ICE) {
auto cast_kind_name = ICE->getCastKindName();
auto cast_kind = ICE->getCastKind();
if ((clang::CK_FunctionToPointerDecay == cast_kind)) {
process_child_flag = false;
} else {
if ((clang::CK_ArrayToPointerDecay == cast_kind) || (clang::CK_LValueToRValue == cast_kind)) {
process_child_flag = true;
} else {
process_child_flag = true;
}
}
} else { assert(false); }
} else if ((clang::Stmt::StmtClass::CStyleCastExprClass == stmt_class)) {
auto CSCE = llvm::cast<const clang::CStyleCastExpr>(ST);
if (CSCE) {
auto cast_kind_name = CSCE->getCastKindName();
auto cast_kind = CSCE->getCastKind();
auto qtype = CSCE->getType();
if ((clang::CK_FunctionToPointerDecay == cast_kind)) {
process_child_flag = false;
} else {
if ((clang::CK_ArrayToPointerDecay == cast_kind) || (clang::CK_LValueToRValue == cast_kind)) {
process_child_flag = true;
} else {
process_child_flag = true;
}
}
} else { assert(false); }
} else if ((clang::Stmt::StmtClass::ParenExprClass == stmt_class)) {
process_child_flag = true;
} else if ((clang::Stmt::StmtClass::CallExprClass == stmt_class)) {
process_child_flag = true;
} else if(clang::Stmt::StmtClass::DeclRefExprClass == stmt_class) {
auto DRE = llvm::cast<const clang::DeclRefExpr>(ST);
if (DRE) {
retval = DRE;
process_child_flag = true;
} else {
assert(false);
}
} else if(clang::Stmt::StmtClass::MemberExprClass == stmt_class) {
auto ME = llvm::cast<const clang::MemberExpr>(ST);
if (ME) {
retval = ME;
} else {
assert(false);
}
} else {
if (0 == depth) {
int q = 5;
}
int q = 5;
}
if (process_child_flag) {
auto child_iter = ST->child_begin();
if (child_iter != ST->child_end()) {
if (nullptr != (*child_iter)) {
const auto noted_stack_size = stack.size();
auto res = populateStmtIndirectionStack(stack, *(*child_iter), depth+1);
if ((nullptr == retval) || (stack.size() > noted_stack_size)) {
retval = res;
}
} else {
assert(false);
}
} else {
int q = 5;
}
}
return retval;
}
void walkTheAST1(const clang::Stmt& stmt, int depth = 0) {
const clang::Stmt* ST = &stmt;
auto stmt_class = ST->getStmtClass();
auto stmt_class_name = ST->getStmtClassName();
bool process_children_flag = true;
if (clang::Stmt::StmtClass::ArraySubscriptExprClass == stmt_class) {
//stack.push_back("ArraySubscriptExpr");
process_children_flag = true;
} else if (clang::Stmt::StmtClass::UnaryOperatorClass == stmt_class) {
auto UO = llvm::cast<const clang::UnaryOperator>(ST);
if (UO) {
if (clang::UnaryOperatorKind::UO_Deref == UO->getOpcode()) {
//stack.push_back("Deref");
process_children_flag = true;
} else {
auto QT = UO->getType();
const clang::Type* TP = QT.getTypePtr();
if (TP && TP->isPointerType()) {
if ((clang::UnaryOperatorKind::UO_PreInc == UO->getOpcode())
|| (clang::UnaryOperatorKind::UO_PostInc == UO->getOpcode())
|| (clang::UnaryOperatorKind::UO_PreDec == UO->getOpcode())
|| (clang::UnaryOperatorKind::UO_PostDec == UO->getOpcode())) {
/* Incrementing/decrementing a pointer type is pointer arithmetic and
* implies the pointer is being used as an array iterator. */
int q = 5;
}
}
}
} else {
assert(false);
}
} else if ((clang::Stmt::StmtClass::ImplicitCastExprClass == stmt_class)) {
auto ICE = llvm::cast<const clang::ImplicitCastExpr>(ST);
if (ICE) {
auto cast_kind_name = ICE->getCastKindName();
auto cast_kind = ICE->getCastKind();
if ((clang::CK_FunctionToPointerDecay == cast_kind)) {
process_children_flag = false;
} else {
if ((clang::CK_ArrayToPointerDecay == cast_kind) || (clang::CK_LValueToRValue == cast_kind)) {
process_children_flag = true;
} else {
process_children_flag = true;
}
}
} else { assert(false); }
} else if ((clang::Stmt::StmtClass::ParenExprClass == stmt_class)) {
process_children_flag = true;
} else if(clang::Stmt::StmtClass::DeclRefExprClass == stmt_class) {
auto DRE = llvm::cast<const clang::DeclRefExpr>(ST);
if (DRE) {
//retval = DRE;
process_children_flag = true;
} else {
assert(false);
}
} else if(clang::Stmt::StmtClass::MemberExprClass == stmt_class) {
auto ME = llvm::cast<const clang::MemberExpr>(ST);
if (ME) {
//retval = ME;
} else {
assert(false);
}
} else {
if (0 == depth) {
int q = 5;
}
int q = 5;
}
if (process_children_flag) {
for (auto child_iter = ST->child_begin(); child_iter != ST->child_end(); child_iter++) {
if (nullptr != (*child_iter)) {
walkTheAST1(*(*child_iter), depth+1);
} else {
assert(false);
}
}
}
return;
}
class CDDeclConversionState {
public:
CDDeclConversionState(const clang::DeclaratorDecl& ddecl) : m_ddecl_cptr(&ddecl) {
QualType QT = ddecl.getType();
assert(ddecl.isFunctionOrFunctionTemplate() == QT->isFunctionType());
if (QT->isFunctionType()) {
m_is_a_function = true;
}
m_original_direct_qtype = populateQTypeIndirectionStack(m_indirection_state_stack, QT);
m_current_direct_qtype = m_original_direct_qtype;
//std::reverse(m_indirection_state_stack.begin(), m_indirection_state_stack.end());
}
bool is_an_indirect_type(size_t indirection_level = 0) const { return (m_indirection_state_stack.size() > indirection_level); }
bool has_been_determined_to_be_an_array(size_t indirection_level = 0) const {
bool retval = false;
assert((0 == indirection_level) || (m_indirection_state_stack.size() > indirection_level));
if (m_indirection_state_stack.size() > indirection_level) {
const auto& current_state = m_indirection_state_stack[indirection_level].m_current;
if (("inferred array" == current_state) || ("dynamic array" == current_state) || ("native array" == current_state)) {
retval = true;
}
}
return retval;
}
bool has_been_determined_to_be_a_dynamic_array(size_t indirection_level = 0) const {
bool retval = false;
assert((0 == indirection_level) || (m_indirection_state_stack.size() > indirection_level));
if (m_indirection_state_stack.size() > indirection_level) {
const auto& current_state = m_indirection_state_stack[indirection_level].m_current;
if ("dynamic array" == current_state) {
retval = true;
}
}
return retval;
}
const DeclaratorDecl* m_ddecl_cptr = nullptr;
CIndirectionStateStack m_indirection_state_stack;
clang::QualType m_original_direct_qtype;
clang::QualType m_current_direct_qtype;
std::string m_initializer_info_str;
bool m_original_initialization_has_been_noted = false;
std::string m_original_initialization_expr_str;
bool m_original_source_text_has_been_noted = false;
std::string m_original_source_text_str;
bool m_is_a_function = false;
std::vector<const clang::ParmVarDecl*> m_original_function_parameter_decl_cptrs;
std::string m_function_return_type_original_source_text_str;
};
class CDDeclConversionStateMap : public std::map<const clang::DeclaratorDecl*, CDDeclConversionState> {
public:
std::pair<iterator, bool> insert(const clang::DeclaratorDecl& ddecl) {
std::string variable_name = ddecl.getNameAsString();
if ("bitlen" == variable_name) {
int q = 5;
}
value_type item(&ddecl, CDDeclConversionState(ddecl));
return std::map<const clang::DeclaratorDecl*, CDDeclConversionState>::insert(item);
}
};
bool is_an_indirect_type(const CDDeclIndirection& ddecl_indirection) {
return CDDeclConversionState(*(ddecl_indirection.m_ddecl_cptr)).is_an_indirect_type(ddecl_indirection.m_indirection_level);
}
bool is_an_indirect_type(const clang::DeclaratorDecl& ddecl) {
return CDDeclConversionState(ddecl).is_an_indirect_type();
}
bool is_an_indirect_type(const QualType& QT, size_t indirection_level = 0) {
CIndirectionStateStack m_indirection_state_stack;
auto m_current_direct_qtype = populateQTypeIndirectionStack(m_indirection_state_stack, QT);
return (indirection_level < m_indirection_state_stack.size());
}
class CExprTextModifier {
public:
virtual ~CExprTextModifier() {}
virtual std::string modified_copy(const std::string& input_text, const clang::Expr* expr_ptr = nullptr) const {
return input_text;
}
virtual std::string species_str() const {
return "no op";
}
};
class CWrapExprTextModifier : public CExprTextModifier {
public:
CWrapExprTextModifier(const std::string& prefix, const std::string& suffix) :
m_prefix(prefix), m_suffix(suffix) {}
virtual ~CWrapExprTextModifier() {}
virtual std::string modified_copy(const std::string& input_text, const clang::Expr* expr_ptr = nullptr) const {
return m_prefix + input_text + m_suffix;
}
virtual std::string species_str() const {
return "wrap";
}
std::string m_prefix;
std::string m_suffix;
};
class CNullableAnyRandomAccessIterCastExprTextModifier : public CWrapExprTextModifier {
public:
CNullableAnyRandomAccessIterCastExprTextModifier(const clang::QualType& qtype) :
CWrapExprTextModifier("mse::TNullableAnyRandomAccessIterator<" + qtype.getAsString() + " >(", ")"),
m_qtype(qtype) {}
virtual ~CNullableAnyRandomAccessIterCastExprTextModifier() {}
virtual std::string species_str() const {
return "nullable any random access iter cast";
}
clang::QualType m_qtype;
};
class CStraightReplacementExprTextModifier : public CExprTextModifier {
public:
CStraightReplacementExprTextModifier(const std::string& replacement_text) :
m_replacement_text(replacement_text) {}
virtual ~CStraightReplacementExprTextModifier() {}
virtual std::string modified_copy(const std::string& input_text, const clang::Expr* expr_ptr = nullptr) const {
return m_replacement_text;
}
virtual std::string species_str() const {
return "straight replacement";
}
std::string m_replacement_text;
};
class CExprTextModifierStack : public std::vector<std::shared_ptr<CExprTextModifier>> {
public:
};
class CExprConversionState {
public:
CExprConversionState(const clang::Expr& expr, Rewriter &Rewrite) : m_expr_cptr(&expr), Rewrite(Rewrite) {
m_original_source_text_str = Rewrite.getRewrittenText(nice_source_range());
m_current_text_str = m_original_source_text_str;
}
virtual ~CExprConversionState() {}
virtual void update_current_text() {
m_current_text_str = modified_copy(m_original_source_text_str);
}
clang::SourceRange source_range() const {
clang::SourceRange retval;
return m_expr_cptr->getSourceRange();
}
clang::SourceRange nice_source_range() const {
return ::nice_source_range(source_range(), Rewrite);
}
void set_parent_shptr(const std::shared_ptr<CExprConversionState>& parent_shptr) {
m_parent_shptr = parent_shptr;
}
void set_childrens_parent_shptr(const std::shared_ptr<CExprConversionState>& parent_shptr) {
for (auto& child_shptr : m_children_shptrs) {
child_shptr->set_parent_shptr(parent_shptr);
}
}
std::string modified_copy(const std::string& input_text) const {
std::string retval = input_text;
for (const auto& modifier_shptr_cref : m_expr_text_modifier_stack) {
retval = (*modifier_shptr_cref).modified_copy(retval, m_expr_cptr);
}
return retval;
}
CExprTextModifierStack m_expr_text_modifier_stack;
std::shared_ptr<CExprConversionState> m_parent_shptr;
std::vector<std::shared_ptr<CExprConversionState>> m_children_shptrs;
const Expr* m_expr_cptr = nullptr;
std::string m_original_source_text_str;
std::string m_current_text_str;
Rewriter &Rewrite;
};
class CConditionalOperatorExprConversionState : public CExprConversionState {
public:
CConditionalOperatorExprConversionState(const clang::ConditionalOperator& co_cref, Rewriter &Rewrite) : CExprConversionState(co_cref, Rewrite) {
auto cond_ptr = co_cref.getCond();
auto lhs_ptr = co_cref.getLHS();
auto rhs_ptr = co_cref.getRHS();
if (cond_ptr && lhs_ptr && rhs_ptr) {
m_cond_shptr = std::make_shared<CExprConversionState>(*cond_ptr, Rewrite);
m_children_shptrs.push_back(m_cond_shptr);
m_lhs_shptr = std::make_shared<CExprConversionState>(*lhs_ptr, Rewrite);
m_children_shptrs.push_back(m_lhs_shptr);
m_rhs_shptr = std::make_shared<CExprConversionState>(*rhs_ptr, Rewrite);
m_children_shptrs.push_back(m_rhs_shptr);
} else {
assert(false);
throw("");
}
}
const clang::ConditionalOperator& co_cref() const {
return (*(static_cast<const clang::ConditionalOperator *>(m_expr_cptr)));
}
virtual void update_current_text() {
if (true) {
/* Do we need to update the kids first? */
cond_shptr()->update_current_text();
lhs_shptr()->update_current_text();
rhs_shptr()->update_current_text();
}
std::string updated_text = cond_shptr()->m_current_text_str + " ? "
+ lhs_shptr()->m_current_text_str + " : " + rhs_shptr()->m_current_text_str;
updated_text = modified_copy(updated_text);
m_current_text_str = updated_text;
}
std::shared_ptr<CExprConversionState>& cond_shptr() {
if (3 != m_children_shptrs.size()) {
assert(false);
return m_cond_shptr;
} else {
return m_children_shptrs[0];
}
}
std::shared_ptr<CExprConversionState>& lhs_shptr() {
if (3 != m_children_shptrs.size()) {
assert(false);
return m_lhs_shptr;
} else {
return m_children_shptrs[1];
}
}
std::shared_ptr<CExprConversionState>& rhs_shptr() {
if (3 != m_children_shptrs.size()) {
assert(false);
return m_rhs_shptr;
} else {
return m_children_shptrs[2];
}
}
private:
std::shared_ptr<CExprConversionState> m_cond_shptr;
std::shared_ptr<CExprConversionState> m_lhs_shptr;
std::shared_ptr<CExprConversionState> m_rhs_shptr;
};
class CAddressofArraySubscriptExprConversionState : public CExprConversionState {
public:
CAddressofArraySubscriptExprConversionState(const clang::UnaryOperator& addrofexpr_cref, Rewriter &Rewrite, const clang::ArraySubscriptExpr& arraysubscriptexpr_cref) : CExprConversionState(addrofexpr_cref, Rewrite), m_arraysubscriptexpr_cptr(&arraysubscriptexpr_cref) {
assert(clang::UnaryOperatorKind::UO_AddrOf == addrofexpr_cref.getOpcode());
m_arraysubscriptexpr_shptr = std::make_shared<CExprConversionState>(*m_arraysubscriptexpr_cptr, Rewrite);
m_children_shptrs.push_back(m_arraysubscriptexpr_shptr);
}
const clang::UnaryOperator& addrofexpr_cref() const {
return (*(static_cast<const clang::UnaryOperator *>(m_expr_cptr)));
}
virtual void update_current_text() {
if (true) {
/* Do we need to update the kids first? */
arraysubscriptexpr_shptr()->update_current_text();
}
std::string updated_text = "&(" + arraysubscriptexpr_shptr()->m_current_text_str + ")";
updated_text = modified_copy(updated_text);
m_current_text_str = updated_text;
}
std::shared_ptr<CExprConversionState>& arraysubscriptexpr_shptr() {
if (1 != m_children_shptrs.size()) {
assert(false);
return m_arraysubscriptexpr_shptr;
} else {
return m_children_shptrs[0];
}
}
private:
std::shared_ptr<CExprConversionState> m_arraysubscriptexpr_shptr;
const clang::ArraySubscriptExpr* m_arraysubscriptexpr_cptr = nullptr;
};
template<class X, class... Args>
std::shared_ptr<X> make_expr_conversion_state_shared_ptr(Args&&... args) {
std::shared_ptr<X> retval = std::make_shared<X>(std::forward<Args>(args)...);
retval->set_childrens_parent_shptr(retval);
return retval;
}
class CExprConversionStateMap : public std::map<const clang::Expr*, std::shared_ptr<CExprConversionState>> {
public:
typedef std::map<const clang::Expr*, std::shared_ptr<CExprConversionState>> base_class;
iterator insert( const std::shared_ptr<CExprConversionState>& cr_shptr ) {
iterator retval(end());
if (!cr_shptr) { assert(false); } else {
decltype((*cr_shptr).m_children_shptrs) mapped_children_shptrs;
for (auto& child_shptr_ref : (*cr_shptr).m_children_shptrs) {
//value_type val((*child_shptr_ref).m_expr_cptr, child_shptr_ref);
//auto res2 = base_class::insert(val);
auto iter1 = insert(child_shptr_ref);
if (child_shptr_ref != (*iter1).second) {
int q = 7;
}
mapped_children_shptrs.push_back((*iter1).second);
}
value_type val((*cr_shptr).m_expr_cptr, cr_shptr);
auto res1 = base_class::insert(val);
retval = res1.first;
(*((*retval).second)).m_children_shptrs = mapped_children_shptrs;
}
return retval;
}
};
class CState1;
class CReplacementAction {
public:
virtual ~CReplacementAction() {}
virtual void do_replacement(CState1& state1) const = 0;
};
class CDDecl2ReplacementAction : public CReplacementAction {
public:
CDDecl2ReplacementAction(Rewriter &Rewrite, const MatchFinder::MatchResult &MR,
const CDDeclIndirection& ddecl_indirection) : m_Rewrite(Rewrite), m_MR(MR), m_ddecl_indirection(ddecl_indirection) {}
virtual ~CDDecl2ReplacementAction() {}
virtual void do_replacement(CState1& state1) const = 0;
virtual const clang::DeclaratorDecl* get_ddecl_cptr() const { return m_ddecl_indirection.m_ddecl_cptr; }
virtual const CDDeclIndirection& ddecl_indirection_cref() const { return m_ddecl_indirection; }
clang::SourceRange source_range() {
clang::SourceRange retval = m_ddecl_indirection.m_ddecl_cptr->getSourceRange();
return retval;
}
clang::SourceLocation start_location() {
clang::SourceLocation retval = source_range().getBegin();
return retval;
}
std::string get_var_name() {
std::string retval = m_ddecl_indirection.m_ddecl_cptr->getNameAsString();
return retval;
}
Rewriter& m_Rewrite;
const MatchFinder::MatchResult m_MR;
CDDeclIndirection m_ddecl_indirection;
};
class CArray2ReplacementAction : public CDDecl2ReplacementAction {
public:
using CDDecl2ReplacementAction::CDDecl2ReplacementAction;
virtual ~CArray2ReplacementAction() {}
};
class CMemsetArray2ReplacementAction : public CArray2ReplacementAction {
public:
CMemsetArray2ReplacementAction(Rewriter &Rewrite, const MatchFinder::MatchResult &MR, const CDDeclIndirection& ddecl_indirection,
const CallExpr* CE, const std::string& ce_replacement_code) :
CArray2ReplacementAction(Rewrite, MR, ddecl_indirection), m_CE(CE), m_DD(ddecl_indirection.m_ddecl_cptr),
m_ce_replacement_code(ce_replacement_code) {}
virtual ~CMemsetArray2ReplacementAction() {}
virtual void do_replacement(CState1& state1) const;
const CallExpr* m_CE = nullptr;
//const DeclRefExpr* m_DRE = nullptr;
//const MemberExpr* m_ME = nullptr;
const DeclaratorDecl* m_DD = nullptr;
std::string m_ce_replacement_code;
};
class CMemcpyArray2ReplacementAction : public CArray2ReplacementAction {
public:
CMemcpyArray2ReplacementAction(Rewriter &Rewrite, const MatchFinder::MatchResult &MR, const CDDeclIndirection& ddecl_indirection,
const CallExpr* CE, const std::string& ce_replacement_code) :
CArray2ReplacementAction(Rewrite, MR, ddecl_indirection), m_CE(CE), m_DD(ddecl_indirection.m_ddecl_cptr),
m_ce_replacement_code(ce_replacement_code) {}
virtual ~CMemcpyArray2ReplacementAction() {}
virtual void do_replacement(CState1& state1) const;
const CallExpr* m_CE = nullptr;
//const DeclRefExpr* m_DRE = nullptr;
//const MemberExpr* m_ME = nullptr;
const DeclaratorDecl* m_DD = nullptr;
std::string m_ce_replacement_code;
};
class CAssignmentTargetConstrainsSourceArray2ReplacementAction : public CArray2ReplacementAction {
public:
CAssignmentTargetConstrainsSourceArray2ReplacementAction(Rewriter &Rewrite, const MatchFinder::MatchResult &MR, const CDDeclIndirection& ddecl_indirection,
const CDDeclIndirection& ddecl_indirection2) :
CArray2ReplacementAction(Rewrite, MR, ddecl_indirection), m_ddecl_indirection2(ddecl_indirection2) {}
virtual ~CAssignmentTargetConstrainsSourceArray2ReplacementAction() {}
virtual void do_replacement(CState1& state1) const;
const CDDeclIndirection m_ddecl_indirection2;
};
class CAssignmentSourceConstrainsTargetArray2ReplacementAction : public CArray2ReplacementAction {
public:
CAssignmentSourceConstrainsTargetArray2ReplacementAction(Rewriter &Rewrite, const MatchFinder::MatchResult &MR, const CDDeclIndirection& ddecl_indirection,
const CDDeclIndirection& ddecl_indirection2) :
CArray2ReplacementAction(Rewrite, MR, ddecl_indirection), m_ddecl_indirection2(ddecl_indirection2) {}
virtual ~CAssignmentSourceConstrainsTargetArray2ReplacementAction() {}
virtual void do_replacement(CState1& state1) const;
const CDDeclIndirection m_ddecl_indirection2;
};
class CSameTypeArray2ReplacementAction : public CArray2ReplacementAction {
public:
CSameTypeArray2ReplacementAction(Rewriter &Rewrite, const MatchFinder::MatchResult &MR, const CDDeclIndirection& ddecl_indirection,
const CDDeclIndirection& ddecl_indirection2) :
CArray2ReplacementAction(Rewrite, MR, ddecl_indirection), m_ddecl_indirection2(ddecl_indirection2) {}
virtual ~CSameTypeArray2ReplacementAction() {}
virtual void do_replacement(CState1& state1) const;
const CDDeclIndirection m_ddecl_indirection2;
};
class CAssignmentTargetConstrainsAddressofArraySubscriptExprArray2ReplacementAction : public CArray2ReplacementAction {
public:
CAssignmentTargetConstrainsAddressofArraySubscriptExprArray2ReplacementAction(Rewriter &Rewrite, const MatchFinder::MatchResult &MR, const CDDeclIndirection& ddecl_indirection,
const clang::UnaryOperator& addrofexpr_cref, const clang::ArraySubscriptExpr& arraysubscriptexpr_cref) :
CArray2ReplacementAction(Rewrite, MR, ddecl_indirection), m_addrofexpr_cptr(&addrofexpr_cref), m_arraysubscriptexpr_cptr(&arraysubscriptexpr_cref) {}
virtual ~CAssignmentTargetConstrainsAddressofArraySubscriptExprArray2ReplacementAction() {}
virtual void do_replacement(CState1& state1) const;
const clang::UnaryOperator* m_addrofexpr_cptr = nullptr;
const clang::ArraySubscriptExpr* m_arraysubscriptexpr_cptr = nullptr;
};
class CDDecl2ReplacementActionMap : public std::multimap<CDDeclIndirection, std::shared_ptr<CDDecl2ReplacementAction>> {
public:
typedef std::multimap<CDDeclIndirection, std::shared_ptr<CDDecl2ReplacementAction>> base_class;
iterator insert( const std::shared_ptr<CDDecl2ReplacementAction>& cr_shptr ) {
iterator retval(end());
if (!cr_shptr) { assert(false); } else {
value_type val((*cr_shptr).ddecl_indirection_cref(), cr_shptr);
retval = base_class::insert(val);
}
return retval;
}
void do_and_dispose_matching_replacements(CState1& state1, const CDDeclIndirection& ddecl_indirection) {
/* The base class map may be modified during loop iterations. Maybe. */
auto iter = base_class::find(ddecl_indirection);
while (base_class::end() != iter) {
(*((*iter).second)).do_replacement(state1);
base_class::erase(iter);
iter = base_class::find(ddecl_indirection);
}
}
};
class CDynamicArray2ReplacementAction : public CArray2ReplacementAction {
public:
using CArray2ReplacementAction::CArray2ReplacementAction;
virtual ~CDynamicArray2ReplacementAction() {}
};
class CMallocArray2ReplacementAction : public CDynamicArray2ReplacementAction {
public:
CMallocArray2ReplacementAction(Rewriter &Rewrite, const MatchFinder::MatchResult &MR, const CDDeclIndirection& ddecl_indirection,
const BinaryOperator* BO, const std::string& bo_replacement_code) :
CDynamicArray2ReplacementAction(Rewrite, MR, ddecl_indirection), m_BO(BO), m_DD(ddecl_indirection.m_ddecl_cptr),
m_bo_replacement_code(bo_replacement_code) {}
virtual ~CMallocArray2ReplacementAction() {}
virtual void do_replacement(CState1& state1) const;
const BinaryOperator* m_BO = nullptr;
//const CallExpr* m_CE = nullptr;
//const DeclRefExpr* m_DRE = nullptr;
//const MemberExpr* m_ME = nullptr;
const DeclaratorDecl* m_DD = nullptr;
std::string m_bo_replacement_code;
};
class CMallocInitializerArray2ReplacementAction : public CDynamicArray2ReplacementAction {
public:
CMallocInitializerArray2ReplacementAction(Rewriter &Rewrite, const MatchFinder::MatchResult &MR, const CDDeclIndirection& ddecl_indirection,
const DeclStmt* DS, const std::string& initializer_info_str) :
CDynamicArray2ReplacementAction(Rewrite, MR, ddecl_indirection), m_DS(DS), m_DD(ddecl_indirection.m_ddecl_cptr),
m_initializer_info_str(initializer_info_str) {}
virtual ~CMallocInitializerArray2ReplacementAction() {}
virtual void do_replacement(CState1& state1) const;
const DeclStmt* m_DS = nullptr;
//const CallExpr* m_CE = nullptr;
const DeclaratorDecl* m_DD = nullptr;
std::string m_initializer_info_str;
};
class CFreeDynamicArray2ReplacementAction : public CDynamicArray2ReplacementAction {
public:
CFreeDynamicArray2ReplacementAction(Rewriter &Rewrite, const MatchFinder::MatchResult &MR, const CDDeclIndirection& ddecl_indirection,
const CallExpr* CE, const std::string& ce_replacement_code) :
CDynamicArray2ReplacementAction(Rewrite, MR, ddecl_indirection), m_CE(CE), m_DD(ddecl_indirection.m_ddecl_cptr),
m_ce_replacement_code(ce_replacement_code) {}
virtual ~CFreeDynamicArray2ReplacementAction() {}
virtual void do_replacement(CState1& state1) const;
const CallExpr* m_CE = nullptr;
//const DeclRefExpr* m_DRE = nullptr;
//const MemberExpr* m_ME = nullptr;
const DeclaratorDecl* m_DD = nullptr;
std::string m_ce_replacement_code;
};
class CSetArrayPointerToNull2ReplacementAction : public CDynamicArray2ReplacementAction {
public:
CSetArrayPointerToNull2ReplacementAction(Rewriter &Rewrite, const MatchFinder::MatchResult &MR, const CDDeclIndirection& ddecl_indirection,
const BinaryOperator* BO, const std::string& bo_replacement_code) :
CDynamicArray2ReplacementAction(Rewrite, MR, ddecl_indirection), m_BO(BO), m_DD(ddecl_indirection.m_ddecl_cptr),
m_bo_replacement_code(bo_replacement_code) {}
virtual ~CSetArrayPointerToNull2ReplacementAction() {}
virtual void do_replacement(CState1& state1) const;
const BinaryOperator* m_BO = nullptr;
//const DeclRefExpr* m_DRE = nullptr;
//const MemberExpr* m_ME = nullptr;
const DeclaratorDecl* m_DD = nullptr;
std::string m_bo_replacement_code;
};
/* This class represents and "enforces" the constraint that the lhs and rhs
* values of a conditional operator must be the same type. */
class CConditionalOperatorReconciliation2ReplacementAction : public CDynamicArray2ReplacementAction {
public:
CConditionalOperatorReconciliation2ReplacementAction(Rewriter &Rewrite, const MatchFinder::MatchResult &MR, const CDDeclIndirection& ddecl_indirection,
const clang::ConditionalOperator* CO, const DeclaratorDecl* lhs_DD, const DeclaratorDecl* rhs_DD, const DeclaratorDecl* var_DD = nullptr) :
CDynamicArray2ReplacementAction(Rewrite, MR, ddecl_indirection), m_CO(CO), m_lhs_DD(lhs_DD), m_rhs_DD(rhs_DD), m_var_DD(var_DD) {}
virtual ~CConditionalOperatorReconciliation2ReplacementAction() {}
virtual void do_replacement(CState1& state1) const;
const clang::ConditionalOperator* m_CO = nullptr;
const DeclaratorDecl* m_lhs_DD = nullptr;
const DeclaratorDecl* m_rhs_DD = nullptr;
const DeclaratorDecl* m_var_DD = nullptr;
};
class CDynamicArray2ReplacementActionMap : public CDDecl2ReplacementActionMap {
public:
iterator insert( const std::shared_ptr<CDynamicArray2ReplacementAction>& cr_shptr ) {
return CDDecl2ReplacementActionMap::insert(static_cast<std::shared_ptr<CDDecl2ReplacementAction> >(cr_shptr));
}
};
class CArray2ReplacementActionMap : public CDDecl2ReplacementActionMap {
public:
iterator insert( const std::shared_ptr<CArray2ReplacementAction>& cr_shptr ) {
return CDDecl2ReplacementActionMap::insert(static_cast<std::shared_ptr<CDDecl2ReplacementAction> >(cr_shptr));
}
};
class CState1 {
public:
/* This container holds (potential) actions that are meant to be executed if/when
* their corresponding item is determined to be a dynamic array. */
CArray2ReplacementActionMap m_dynamic_array2_contingent_replacement_map;
/* This container holds (potential) actions that are meant to be executed if/when
* their corresponding item is determined to be an array (dynamic or otherwise). */
CArray2ReplacementActionMap m_array2_contingent_replacement_map;
/* This container holds information about each item's original type and which
* type it might be converted to. */
CDDeclConversionStateMap m_ddecl_conversion_state_map;
/* This container holds information about selected expressions' original text and
* any modifications we might have made. */
CExprConversionStateMap m_expr_conversion_state_map;
};
class CDeclarationReplacementCodeItem {
public:
std::string m_replacement_code;
std::string m_action_species;
};
static CDeclarationReplacementCodeItem generate_declaration_replacement_code(const DeclaratorDecl* DD,
Rewriter &Rewrite, CDDeclConversionStateMap& ddecl_conversion_state_map, std::string options_str = "") {
CDeclarationReplacementCodeItem retval;
if (!DD) {
return retval;
}
auto decl_source_range = nice_source_range(DD->getSourceRange(), Rewrite);
if (!(decl_source_range.isValid())) {
return retval;
}
auto res1 = ddecl_conversion_state_map.insert(*DD);
auto ddcs_map_iter = res1.first;
auto& ddcs_ref = (*ddcs_map_iter).second;
QualType QT = DD->getType();
const clang::FunctionDecl* FND = nullptr;
bool type_is_function_type = false;
assert(DD->isFunctionOrFunctionTemplate() == QT->isFunctionType());
if (QT->isFunctionType()) {
FND = dynamic_cast<const clang::FunctionDecl*>(DD);
if (FND) {
type_is_function_type = true;
QT = FND->getReturnType();
}
}
const clang::Type* TP = QT.getTypePtr();
auto qtype_str = QT.getAsString();
auto direct_qtype_str = ddcs_ref.m_current_direct_qtype.getAsString();
if ("_Bool" == direct_qtype_str) {
direct_qtype_str = "bool";
} else if ("const _Bool" == direct_qtype_str) {
direct_qtype_str = "const bool";
}
auto non_const_direct_qtype = ddcs_ref.m_current_direct_qtype;
non_const_direct_qtype.removeLocalConst();
auto non_const_direct_qtype_str = non_const_direct_qtype.getAsString();
if ("_Bool" == non_const_direct_qtype_str) {
non_const_direct_qtype_str = "bool";
}
auto direct_TP = ddcs_ref.m_current_direct_qtype.getTypePtr();
if (!direct_TP) {
return retval;
}
bool direct_type_is_function_type = direct_TP->isFunctionType();
std::string variable_name = DD->getNameAsString();
std::string identifier_name_str;
auto pIdentifier = DD->getIdentifier();
if (pIdentifier) {
identifier_name_str = pIdentifier->getName();
}
if ("" == variable_name) {
int q = 7;
} else if ("LODEPNG_VERSION_STRING" == variable_name) {
int q = 5;
}
if (!(ddcs_ref.m_original_source_text_has_been_noted)) {
ddcs_ref.m_original_source_text_str = Rewrite.getRewrittenText(decl_source_range);
if (FND) {
assert(type_is_function_type);
ddcs_ref.m_is_a_function = true;
for (size_t i = 0; i < FND->getNumParams(); i+=1) {
ddcs_ref.m_original_function_parameter_decl_cptrs.push_back(FND->getParamDecl(i));
}
auto return_type_source_range = nice_source_range(FND->getReturnTypeSourceRange(), Rewrite);
if (!(return_type_source_range.isValid())) {
return retval;
}
ddcs_ref.m_function_return_type_original_source_text_str = Rewrite.getRewrittenText(return_type_source_range);
}
ddcs_ref.m_original_source_text_has_been_noted = true;
}
clang::StorageClass storage_class = clang::StorageClass::SC_None;
bool is_extern = false;
clang::StorageDuration storage_duration = clang::StorageDuration::SD_Automatic;
bool has_dynamic_storage_duration = false;
bool is_a_temporary = false;
bool is_static = false;
bool is_a_function_parameter = false;
bool is_member = false;
bool is_vardecl = false;
std::string initialization_expr_str;
bool is_function = DD->isFunctionOrFunctionTemplate();
auto VD = dynamic_cast<const clang::VarDecl *>(DD);
if (VD) {
is_vardecl = true;
storage_class = VD->getStorageClass();
is_extern = (clang::StorageClass::SC_Extern == storage_class);
storage_duration = VD->getStorageDuration();
has_dynamic_storage_duration = (clang::StorageDuration::SD_Dynamic == storage_duration);
is_a_temporary = (clang::StorageDuration::SD_FullExpression == storage_duration);
//is_static = (clang::StorageDuration::SD_Static == storage_duration);
is_static = (clang::StorageClass::SC_Static == storage_class);
if ((clang::StorageDuration::SD_Static == storage_duration) && (!is_static)) {
int q = 5;
}
is_a_function_parameter = (VD->isLocalVarDeclOrParm() && (!VD->isLocalVarDecl()));
if (ddcs_ref.m_original_initialization_has_been_noted) {
initialization_expr_str = ddcs_ref.m_original_initialization_expr_str;
if ("" != ddcs_ref.m_original_initialization_expr_str) {
int q = 5;
}
} else {
if (VD->hasInit()) {
auto pInitExpr = VD->getInit();
if (pInitExpr) {
auto init_expr_source_range = nice_source_range(pInitExpr->getSourceRange(), Rewrite);
if (init_expr_source_range.isValid()) {
initialization_expr_str = Rewrite.getRewrittenText(init_expr_source_range);
if (variable_name == initialization_expr_str) {
/* We encountered a weird bug where the initialization expression sometimes
* was indicated as being present and the source range set to the variable name
* when actually no initialization expression was present in the original source. */
initialization_expr_str = "";
}
} else {
int q = 3;
}
} else {
int q = 3;
}
ddcs_ref.m_original_initialization_expr_str = initialization_expr_str;
}
ddcs_ref.m_original_initialization_has_been_noted = true;
}
} else {
auto FD = dynamic_cast<const clang::FieldDecl*>(DD);
if (FD) {
is_member = true;
if (ddcs_ref.m_original_initialization_has_been_noted) {
initialization_expr_str = ddcs_ref.m_original_initialization_expr_str;
if ("" != ddcs_ref.m_original_initialization_expr_str) {
int q = 5;
}
} else {
if (FD->hasInClassInitializer()) {
auto pInitExpr = FD->getInClassInitializer();
if (pInitExpr) {
auto init_expr_source_range = nice_source_range(pInitExpr->getSourceRange(), Rewrite);
if (init_expr_source_range.isValid()) {
initialization_expr_str = Rewrite.getRewrittenText(init_expr_source_range);
if (variable_name == initialization_expr_str) {
/* We encountered a weird bug where the initialization expression sometimes
* was indicated as being present and the source range set to the variable name
* when actually no initialization expression was present in the original source. */
initialization_expr_str = "";
}
} else {
int q = 3;
}
} else {
int q = 3;
}
ddcs_ref.m_original_initialization_expr_str = initialization_expr_str;
}
ddcs_ref.m_original_initialization_has_been_noted = true;
}
}
}
ddcs_ref.m_original_initialization_has_been_noted = true;
bool changed_from_original = false;
std::string replacement_code;
std::string prefix_str;
std::string suffix_str;
if (true) {
for (size_t i = 0; i < ddcs_ref.m_indirection_state_stack.size(); i += 1) {
bool is_char_star = false;
bool is_function_pointer = false;
bool is_last_indirection = (ddcs_ref.m_indirection_state_stack.size() == (i+1));
if (is_last_indirection && (("char" == direct_qtype_str) || ("const char" == direct_qtype_str))) {
is_char_star = true;
} else if (is_last_indirection && direct_type_is_function_type) {
is_function_pointer = true;
}
if ("inferred array" == ddcs_ref.m_indirection_state_stack[i].m_current) {
if (is_char_star) {
/* We're assuming this is a null terminated string. We'll just leave it as a
* char* for now. At some point we'll replace it with an mse::string or whatever. */
//prefix_str = prefix_str + "";
suffix_str = "* " + suffix_str;
retval.m_action_species = "char*";
} else {
direct_qtype_str = non_const_direct_qtype_str;
prefix_str = prefix_str + "mse::TNullableAnyRandomAccessIterator<";
suffix_str = "> " + suffix_str;
retval.m_action_species = "native pointer to TNullableAnyRandomAccessIterator";
}
} else if ("dynamic array" == ddcs_ref.m_indirection_state_stack[i].m_current) {
direct_qtype_str = non_const_direct_qtype_str;
if (is_char_star) {
/* We're assuming this is a null terminated string. We'll just leave it as a
* char* for now. At some point we'll replace it with an mse::string or whatever. */
//prefix_str = prefix_str + "";
suffix_str = "* " + suffix_str;
retval.m_action_species = "char*";
} else {
prefix_str = prefix_str + "mse::TIPointerWithBundledVector<";
if (is_a_function_parameter) {
suffix_str = "> " + suffix_str;
retval.m_action_species = "native pointer parameter to TIPointerWithBundledVector";
} else {
suffix_str = "> " + suffix_str;
retval.m_action_species = "native pointer to TIPointerWithBundledVector";
}
}
} else if ("native array" == ddcs_ref.m_indirection_state_stack[i].m_current) {
direct_qtype_str = non_const_direct_qtype_str;
std::string size_text;
if (TP->isVariableArrayType()) {
auto VATP = llvm::cast<const clang::VariableArrayType>(TP);
if (!VATP) {
assert(false);
} else {
auto size_expr = VATP->getSizeExpr();
auto SR = nice_source_range(size_expr->getSourceRange(), Rewrite);
size_text = Rewrite.getRewrittenText(SR);
}
} else if (TP->isConstantArrayType()) {
auto CATP = llvm::cast<const clang::ConstantArrayType>(TP);
if (!CATP) {
assert(false);
} else {
auto array_size = CATP->getSize();
size_text = array_size.toString(10, false);/*check this*/
if (false) {
auto DDSR = nice_source_range(DD->getSourceRange(), Rewrite);
std::string array_size_expression_text;
std::string source_text;
if (DDSR.isValid()) {
source_text = Rewrite.getRewrittenText(DDSR);
auto left_bracket_pos = source_text.find('[');
auto right_bracket_pos = source_text.find(']');
if ((std::string::npos != left_bracket_pos) && (std::string::npos != right_bracket_pos)
&& (left_bracket_pos + 1 < right_bracket_pos)) {
auto array_size_expression_text = source_text.substr(left_bracket_pos + 1, right_bracket_pos - (left_bracket_pos + 1));
int q = 3;
} else {
int q = 7;
}
} else {
int q = 5;
}
}
}
}
if (is_char_star) {
/* We're assuming this is a null terminated string. We'll just leave it as a
* char[] for now. At some point we'll replace it with an mse::string or whatever. */
//prefix_str = prefix_str + "";
suffix_str = "[" + size_text + "]" + suffix_str;
} else {
if (is_a_function_parameter) {
prefix_str = prefix_str + "mse::TNullableAnyRandomAccessIterator<";
suffix_str = ", " + size_text + "> " + suffix_str;
retval.m_action_species = "native array parameter to TNullableAnyRandomAccessIterator";
} else {
prefix_str = prefix_str + "mse::TIteratorWithBundledArray<";
suffix_str = ", " + size_text + "> " + suffix_str;
retval.m_action_species = "native array to TIteratorWithBundledArray";
}
}
} else if ("native pointer" == ddcs_ref.m_indirection_state_stack[i].m_current) {
if (is_char_star) {
/* We're assuming this is a null terminated string. We'll just leave it as a
* char* for now. At some point we'll replace it with an mse::string or whatever. */
//prefix_str = prefix_str + "";
suffix_str = "* " + suffix_str;
retval.m_action_species = "char*";
} else if (is_function_pointer) {
prefix_str = prefix_str + "std::function<";
suffix_str = "> " + suffix_str;
retval.m_action_species = "function pointer to std::function";
} else {
if (false/*for now*/) {
prefix_str = prefix_str + "mse::TAnyPointer<";
suffix_str = "> " + suffix_str;
retval.m_action_species = "native pointer to TAnyPointer";
} else {
//prefix_str = prefix_str + "";
suffix_str = "* " + suffix_str;
retval.m_action_species = "native pointer";
}
}
} else if ("malloc target" == ddcs_ref.m_indirection_state_stack[i].m_current) {
/* We'll just leaving it as a native pointer for now. Ultimately, this won't be the case. */
//prefix_str = prefix_str + "";
suffix_str = "* " + suffix_str;
retval.m_action_species = "malloc target";
}
}
}
bool discard_initializer_option_flag = (std::string::npos != options_str.find("[discard-initializer]"));
std::string initializer_append_str;
if (!discard_initializer_option_flag) {
initializer_append_str = ddcs_ref.m_initializer_info_str;
if (("" == initializer_append_str) && ("" != initialization_expr_str)) {
initializer_append_str = " = " + initialization_expr_str;
}
}
if (("" != prefix_str) || ("" != suffix_str)) {
changed_from_original = true;
} else if (("" != ddcs_ref.m_initializer_info_str) ||
(discard_initializer_option_flag)) {
changed_from_original = true;
} else if (2 <= IndividualDeclaratorDecls(DD, Rewrite).size()) {
/* There is more than one declaration in the declaration statement. We split
* them so that each has their own separate declaration statement. This counts
* as a change from the original source code. */
changed_from_original = true;
}
if (FND) {
assert(type_is_function_type);
if (changed_from_original) {
replacement_code += prefix_str + non_const_direct_qtype_str + suffix_str;
} else {
replacement_code = ddcs_ref.m_function_return_type_original_source_text_str;
}
} else {
if (changed_from_original) {
if (is_extern) {
if ("" == ddcs_ref.m_original_initialization_expr_str) {
replacement_code += "extern ";
}
} else if (is_static) {
replacement_code += "static ";
}
replacement_code += prefix_str + direct_qtype_str + suffix_str;
replacement_code += " ";
replacement_code += variable_name;
replacement_code += initializer_append_str;
} else {
replacement_code = ddcs_ref.m_original_source_text_str;
}
}
retval.m_replacement_code = replacement_code;
return retval;
}
static void update_declaration(const DeclaratorDecl& ddecl, Rewriter &Rewrite, CState1& state1, std::string options_str = "") {
const DeclaratorDecl* DD = &ddecl;
auto SR = nice_source_range(DD->getSourceRange(), Rewrite);
QualType QT = DD->getType();
const clang::Type* TP = QT.getTypePtr();
auto qtype_str = QT.getAsString();
std::string source_text;
if (SR.isValid()) {
source_text = Rewrite.getRewrittenText(SR);
if ("" == source_text) {
return;
}
} else {
return;
}
std::string variable_name = DD->getNameAsString();
if (("" == variable_name) || (!TP)) {
return;
}
assert(ddecl.isFunctionOrFunctionTemplate() == QT->isFunctionType());
if ((TP->isFunctionType()) || (false)) {
const clang::FunctionDecl* FND = dynamic_cast<const clang::FunctionDecl*>(DD);
if (FND) {
auto return_type_source_range = nice_source_range(FND->getReturnTypeSourceRange(), Rewrite);
if (!(return_type_source_range.isValid())) {
return;
}
auto res = generate_declaration_replacement_code(&ddecl, Rewrite, state1.m_ddecl_conversion_state_map, options_str);
if (ConvertToSCPP && return_type_source_range.isValid() && (1 <= res.m_replacement_code.size())) {
auto res2 = Rewrite.ReplaceText(return_type_source_range, res.m_replacement_code);
} else {
int q = 7;
}
}
} else {
/* There may be multiple declarations in the same declaration statement. Replacing
* one of them requires replacing all of them together. */
auto ddecls = IndividualDeclaratorDecls(DD, Rewrite);
if ((1 <= ddecls.size())/* && (ddecls.back() == DD)*/) {
if (2 <= ddecls.size()) {
int q = 5;
}
std::vector<std::string> action_species_list;
std::string replacement_code;
for (const auto& ddecl_cref : ddecls) {
auto res = generate_declaration_replacement_code(ddecl_cref, Rewrite, state1.m_ddecl_conversion_state_map, options_str);
action_species_list.push_back(res.m_action_species);
replacement_code += res.m_replacement_code;
replacement_code += "; \n";
}
if (replacement_code.size() >= 3) {
replacement_code = replacement_code.substr(0, replacement_code.size() - 3);
}
/* (Only) the source range of the last individual declaration in the declaration statement
* should encompass the whole statement. */
auto last_ddecl = ddecls.back();
auto last_decl_source_range = nice_source_range(last_ddecl->getSourceRange(), Rewrite);
std::string last_decl_source_text;
if (last_decl_source_range.isValid()) {
last_decl_source_text = Rewrite.getRewrittenText(last_decl_source_range);
if ("" == last_decl_source_text) {
return;
}
} else {
return;
}
if (ConvertToSCPP && last_decl_source_range.isValid() && (3 <= replacement_code.size())) {
auto res2 = Rewrite.ReplaceText(last_decl_source_range, replacement_code);
} else {
int q = 7;
}
} else {
int q = 7;
}
}
}
void CMallocArray2ReplacementAction::do_replacement(CState1& state1) const {
Rewriter &Rewrite = m_Rewrite;
const MatchFinder::MatchResult &MR = m_MR;
const BinaryOperator* BO = m_BO;
const DeclaratorDecl* DD = m_DD;
if ((BO != nullptr) && (DD != nullptr))
{
auto BOSR = nice_source_range(BO->getSourceRange(), Rewrite);
auto decl_source_range = nice_source_range(DD->getSourceRange(), Rewrite);
auto decl_source_location_str = decl_source_range.getBegin().printToString(*MR.SourceManager);
std::string decl_source_text;
if (decl_source_range.isValid()) {
decl_source_text = Rewrite.getRewrittenText(decl_source_range);
} else {
return;
}
if (ConvertToSCPP && decl_source_range.isValid() && (BOSR.isValid())) {
update_declaration(*DD, Rewrite, state1);
//state1.m_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, (*this).ddecl_indirection_cref());
//state1.m_dynamic_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, (*this).ddecl_indirection_cref());
auto res2 = Rewrite.ReplaceText(BOSR, m_bo_replacement_code);
int q = 3;
} else {
int q = 7;
}
}
}
void CMallocInitializerArray2ReplacementAction::do_replacement(CState1& state1) const {
Rewriter &Rewrite = m_Rewrite;
const MatchFinder::MatchResult &MR = m_MR;
const DeclStmt* DS = m_DS;
const DeclaratorDecl* DD = m_DD;
if ((DS != nullptr) && (DD != nullptr))
{
auto decl_source_range = nice_source_range(DD->getSourceRange(), Rewrite);
auto decl_source_location_str = decl_source_range.getBegin().printToString(*MR.SourceManager);
std::string decl_source_text;
if (decl_source_range.isValid()) {
decl_source_text = Rewrite.getRewrittenText(decl_source_range);
} else {
return;
}
auto res1 = state1.m_ddecl_conversion_state_map.insert(*DD);
auto ddcs_map_iter = res1.first;
auto& ddcs_ref = (*ddcs_map_iter).second;
std::string current_direct_qtype_str = ddcs_ref.m_current_direct_qtype.getAsString();
std::string initializer_info_str = m_initializer_info_str;
static const std::string void_str = "void";
auto void_pos = initializer_info_str.find(void_str);
if (std::string::npos != void_pos) {
initializer_info_str.replace(void_pos, void_str.length(), current_direct_qtype_str);
}
ddcs_ref.m_initializer_info_str = initializer_info_str;
if (ConvertToSCPP && decl_source_range.isValid()) {
update_declaration(*DD, Rewrite, state1);
//state1.m_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, (*this).ddecl_indirection_cref());
//state1.m_dynamic_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, (*this).ddecl_indirection_cref());
int q = 3;
} else {
int q = 7;
}
}
}
void CFreeDynamicArray2ReplacementAction::do_replacement(CState1& state1) const {
Rewriter &Rewrite = m_Rewrite;
const MatchFinder::MatchResult &MR = m_MR;
const CallExpr* CE = m_CE;
const DeclaratorDecl* DD = m_DD;
if ((CE != nullptr) && (DD != nullptr))
{
auto CESR = nice_source_range(CE->getSourceRange(), Rewrite);
auto decl_source_range = nice_source_range(DD->getSourceRange(), Rewrite);
auto decl_source_location_str = decl_source_range.getBegin().printToString(*MR.SourceManager);
std::string decl_source_text;
if (decl_source_range.isValid()) {
decl_source_text = Rewrite.getRewrittenText(decl_source_range);
} else {
return;
}
if (ConvertToSCPP && decl_source_range.isValid() && (CESR.isValid())) {
update_declaration(*DD, Rewrite, state1);
//state1.m_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, (*this).ddecl_indirection_cref());
//state1.m_dynamic_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, (*this).ddecl_indirection_cref());
auto res2 = Rewrite.ReplaceText(CESR, m_ce_replacement_code);
int q = 3;
} else {
int q = 7;
}
}
}
void CSetArrayPointerToNull2ReplacementAction::do_replacement(CState1& state1) const {
Rewriter &Rewrite = m_Rewrite;
const MatchFinder::MatchResult &MR = m_MR;
const BinaryOperator* BO = m_BO;
const DeclaratorDecl* DD = m_DD;
if ((BO != nullptr) && (DD != nullptr))
{
auto BOSR = nice_source_range(BO->getSourceRange(), Rewrite);
auto decl_source_range = nice_source_range(DD->getSourceRange(), Rewrite);
auto decl_source_location_str = decl_source_range.getBegin().printToString(*MR.SourceManager);
std::string decl_source_text;
if (decl_source_range.isValid()) {
decl_source_text = Rewrite.getRewrittenText(decl_source_range);
} else {
return;
}
if (ConvertToSCPP && decl_source_range.isValid() && (BOSR.isValid())) {
update_declaration(*DD, Rewrite, state1);
auto res2 = Rewrite.ReplaceText(BOSR, m_bo_replacement_code);
int q = 3;
} else {
int q = 7;
}
}
}
void CMemsetArray2ReplacementAction::do_replacement(CState1& state1) const {
Rewriter &Rewrite = m_Rewrite;
const MatchFinder::MatchResult &MR = m_MR;
const CallExpr* CE = m_CE;
const DeclaratorDecl* DD = m_DD;
if ((CE != nullptr) && (DD != nullptr))
{
auto CESR = nice_source_range(CE->getSourceRange(), Rewrite);
auto decl_source_range = nice_source_range(DD->getSourceRange(), Rewrite);
auto decl_source_location_str = decl_source_range.getBegin().printToString(*MR.SourceManager);
std::string decl_source_text;
if (decl_source_range.isValid()) {
decl_source_text = Rewrite.getRewrittenText(decl_source_range);
} else {
return;
}
if (ConvertToSCPP && decl_source_range.isValid() && (CESR.isValid())) {
update_declaration(*DD, Rewrite, state1);
auto res2 = Rewrite.ReplaceText(CESR, m_ce_replacement_code);
int q = 3;
} else {
int q = 7;
}
}
}
void CMemcpyArray2ReplacementAction::do_replacement(CState1& state1) const {
Rewriter &Rewrite = m_Rewrite;
const MatchFinder::MatchResult &MR = m_MR;
const CallExpr* CE = m_CE;
const DeclaratorDecl* DD = m_DD;
if (CE != nullptr)
{
auto CESR = nice_source_range(CE->getSourceRange(), Rewrite);
if (ConvertToSCPP && (CESR.isValid())) {
auto res2 = Rewrite.ReplaceText(CESR, m_ce_replacement_code);
if (DD != nullptr) {
auto decl_source_range = nice_source_range(DD->getSourceRange(), Rewrite);
auto decl_source_location_str = decl_source_range.getBegin().printToString(*MR.SourceManager);
std::string decl_source_text;
if (decl_source_range.isValid()) {
decl_source_text = Rewrite.getRewrittenText(decl_source_range);
} else {
return;
}
if (decl_source_range.isValid()) {
update_declaration(*DD, Rewrite, state1);
}
}
} else {
int q = 7;
}
}
}
void CAssignmentTargetConstrainsSourceArray2ReplacementAction::do_replacement(CState1& state1) const {
Rewriter &Rewrite = m_Rewrite;
const MatchFinder::MatchResult &MR = m_MR;
auto res1 = state1.m_ddecl_conversion_state_map.insert(*(m_ddecl_indirection2.m_ddecl_cptr));
auto ddcs_map_iter = res1.first;
auto& ddcs_ref = (*ddcs_map_iter).second;
bool update_declaration_flag = res1.second;
if (ddcs_ref.m_indirection_state_stack.size() >= m_ddecl_indirection2.m_indirection_level) {
if ("native pointer" == ddcs_ref.m_indirection_state_stack[m_ddecl_indirection2.m_indirection_level].m_current) {
ddcs_ref.m_indirection_state_stack[m_ddecl_indirection2.m_indirection_level].m_current = "inferred array";
update_declaration_flag |= true;
state1.m_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, m_ddecl_indirection2);
} else if ("malloc target" == ddcs_ref.m_indirection_state_stack[m_ddecl_indirection2.m_indirection_level].m_current) {
ddcs_ref.m_indirection_state_stack[m_ddecl_indirection2.m_indirection_level].m_current = "dynamic array";
update_declaration_flag |= true;
state1.m_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, m_ddecl_indirection2);
state1.m_dynamic_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, m_ddecl_indirection2);
} else {
int q = 3;
}
} else {
int q = 7;
}
if (update_declaration_flag) {
update_declaration(*(m_ddecl_indirection2.m_ddecl_cptr), Rewrite, state1);
}
}
void CAssignmentSourceConstrainsTargetArray2ReplacementAction::do_replacement(CState1& state1) const {
Rewriter &Rewrite = m_Rewrite;
const MatchFinder::MatchResult &MR = m_MR;
auto res1 = state1.m_ddecl_conversion_state_map.insert(*(m_ddecl_indirection2.m_ddecl_cptr));
auto ddcs_map_iter = res1.first;
auto& ddcs_ref = (*ddcs_map_iter).second;
bool update_declaration_flag = res1.second;
if (ddcs_ref.m_indirection_state_stack.size() >= m_ddecl_indirection2.m_indirection_level) {
if ("native pointer" == ddcs_ref.m_indirection_state_stack[m_ddecl_indirection2.m_indirection_level].m_current) {
ddcs_ref.m_indirection_state_stack[m_ddecl_indirection2.m_indirection_level].m_current = "inferred array";
update_declaration_flag |= true;
state1.m_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, m_ddecl_indirection2);
} else if ("malloc target" == ddcs_ref.m_indirection_state_stack[m_ddecl_indirection2.m_indirection_level].m_current) {
ddcs_ref.m_indirection_state_stack[m_ddecl_indirection2.m_indirection_level].m_current = "dynamic array";
update_declaration_flag |= true;
state1.m_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, m_ddecl_indirection2);
state1.m_dynamic_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, m_ddecl_indirection2);
} else {
int q = 3;
}
} else {
int q = 7;
}
if (update_declaration_flag) {
update_declaration(*(m_ddecl_indirection2.m_ddecl_cptr), Rewrite, state1);
}
}
void CSameTypeArray2ReplacementAction::do_replacement(CState1& state1) const {
Rewriter &Rewrite = m_Rewrite;
const MatchFinder::MatchResult &MR = m_MR;
auto lhs_res1 = state1.m_ddecl_conversion_state_map.insert(*(m_ddecl_indirection2.m_ddecl_cptr));
auto lhs_ddcs_map_iter = lhs_res1.first;
auto& lhs_ddcs_ref = (*lhs_ddcs_map_iter).second;
bool lhs_update_declaration_flag = lhs_res1.second;
auto rhs_res1 = state1.m_ddecl_conversion_state_map.insert(*(m_ddecl_indirection.m_ddecl_cptr));
auto rhs_ddcs_map_iter = rhs_res1.first;
auto& rhs_ddcs_ref = (*rhs_ddcs_map_iter).second;
bool rhs_update_declaration_flag = rhs_res1.second;
if ((lhs_ddcs_ref.m_indirection_state_stack.size() >= m_ddecl_indirection2.m_indirection_level) &&
(rhs_ddcs_ref.m_indirection_state_stack.size() >= m_ddecl_indirection.m_indirection_level)){
auto& lhs_current_ref = lhs_ddcs_ref.m_indirection_state_stack[m_ddecl_indirection2.m_indirection_level].m_current;
auto& rhs_current_ref = rhs_ddcs_ref.m_indirection_state_stack[m_ddecl_indirection.m_indirection_level].m_current;
if ("native pointer" == lhs_current_ref) {
if ("native pointer" == rhs_current_ref) {
} else if ("malloc target" == rhs_current_ref) {
lhs_current_ref = rhs_current_ref;
lhs_update_declaration_flag |= true;
} else if ("inferred array" == rhs_current_ref) {
lhs_current_ref = rhs_current_ref;
lhs_update_declaration_flag |= true;
state1.m_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, m_ddecl_indirection2);
} else if ("dynamic array" == rhs_current_ref) {
lhs_current_ref = rhs_current_ref;
lhs_update_declaration_flag |= true;
state1.m_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, m_ddecl_indirection2);
state1.m_dynamic_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, m_ddecl_indirection2);
} else if ("native array" == rhs_current_ref) {
lhs_current_ref = rhs_current_ref;
lhs_update_declaration_flag |= true;
state1.m_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, m_ddecl_indirection2);
}
} else if ("malloc target" == lhs_current_ref) {
if ("native pointer" == rhs_current_ref) {
rhs_current_ref = lhs_current_ref;
rhs_update_declaration_flag |= true;
} else if ("malloc target" == rhs_current_ref) {
} else if ("inferred array" == rhs_current_ref) {
lhs_current_ref = "dynamic array";
lhs_update_declaration_flag |= true;
state1.m_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, m_ddecl_indirection2);
state1.m_dynamic_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, m_ddecl_indirection2);
rhs_current_ref = "dynamic array";
rhs_update_declaration_flag |= true;
state1.m_dynamic_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, m_ddecl_indirection);
} else if ("dynamic array" == rhs_current_ref) {
lhs_current_ref = rhs_current_ref;
lhs_update_declaration_flag |= true;
state1.m_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, m_ddecl_indirection2);
state1.m_dynamic_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, m_ddecl_indirection2);
} else if ("native array" == rhs_current_ref) {
// could be a problem
int q = 7;
}
} else if ("inferred array" == lhs_current_ref) {
if ("native pointer" == rhs_current_ref) {
rhs_current_ref = lhs_current_ref;
rhs_update_declaration_flag |= true;
state1.m_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, m_ddecl_indirection);
} else if ("malloc target" == rhs_current_ref) {
lhs_current_ref = "dynamic array";
lhs_update_declaration_flag |= true;
state1.m_dynamic_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, m_ddecl_indirection2);
rhs_current_ref = "dynamic array";
rhs_update_declaration_flag |= true;
state1.m_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, m_ddecl_indirection);
state1.m_dynamic_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, m_ddecl_indirection);
} else if ("inferred array" == rhs_current_ref) {
} else if ("dynamic array" == rhs_current_ref) {
lhs_current_ref = rhs_current_ref;
lhs_update_declaration_flag |= true;
state1.m_dynamic_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, m_ddecl_indirection2);
} else if ("native array" == rhs_current_ref) {
lhs_current_ref = rhs_current_ref;
lhs_update_declaration_flag |= true;
}
} else if ("dynamic array" == lhs_current_ref) {
if ("native pointer" == rhs_current_ref) {
rhs_current_ref = lhs_current_ref;
rhs_update_declaration_flag |= true;
state1.m_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, m_ddecl_indirection);
state1.m_dynamic_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, m_ddecl_indirection);
} else if ("malloc target" == rhs_current_ref) {
rhs_current_ref = lhs_current_ref;
rhs_update_declaration_flag |= true;
state1.m_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, m_ddecl_indirection);
state1.m_dynamic_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, m_ddecl_indirection);
} else if ("inferred array" == rhs_current_ref) {
rhs_current_ref = lhs_current_ref;
rhs_update_declaration_flag |= true;
state1.m_dynamic_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, m_ddecl_indirection);
} else if ("dynamic array" == rhs_current_ref) {
} else if ("native array" == rhs_current_ref) {
// could be a problem
int q = 7;
}
} else if ("native array" == lhs_current_ref) {
if ("native pointer" == rhs_current_ref) {
rhs_current_ref = lhs_current_ref;
rhs_update_declaration_flag |= true;
state1.m_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1, m_ddecl_indirection);
} else if ("malloc target" == rhs_current_ref) {
// could be a problem
int q = 7;
} else if ("inferred array" == rhs_current_ref) {
rhs_current_ref = lhs_current_ref;
rhs_update_declaration_flag |= true;
} else if ("dynamic array" == rhs_current_ref) {
// could be a problem
int q = 7;
} else if ("native array" == rhs_current_ref) {
}
}
} else {
int q = 7;
}
if (lhs_update_declaration_flag) {
update_declaration(*(m_ddecl_indirection2.m_ddecl_cptr), Rewrite, state1);
}
if (rhs_update_declaration_flag) {
update_declaration(*(m_ddecl_indirection.m_ddecl_cptr), Rewrite, state1);
}
}
void CAssignmentTargetConstrainsAddressofArraySubscriptExprArray2ReplacementAction::do_replacement(CState1& state1) const {
Rewriter &Rewrite = m_Rewrite;
const MatchFinder::MatchResult &MR = m_MR;
const clang::UnaryOperator* UO = m_addrofexpr_cptr;
const ArraySubscriptExpr* ASE = m_arraysubscriptexpr_cptr;
if (UO && ASE) {
auto UOSR = nice_source_range(UO->getSourceRange(), (*this).m_Rewrite);
auto ase_SR = nice_source_range(ASE->getSourceRange(), (*this).m_Rewrite);
if ((UOSR.isValid()) && (ase_SR.isValid())) {
auto uocs_iter = state1.m_expr_conversion_state_map.find(UO);
if (state1.m_expr_conversion_state_map.end() == uocs_iter) {
std::shared_ptr<CExprConversionState> shptr1 = make_expr_conversion_state_shared_ptr<CAddressofArraySubscriptExprConversionState>(*UO, m_Rewrite, *ASE);
uocs_iter = state1.m_expr_conversion_state_map.insert(shptr1);
}
auto& uocs_shptr_ref = (*uocs_iter).second;
auto index_expr_cptr = ASE->getIdx();
auto array_expr_cptr = ASE->getBase();
if (index_expr_cptr && array_expr_cptr) {
auto index_expr_SR = nice_source_range(index_expr_cptr->getSourceRange(), (*this).m_Rewrite);
auto array_expr_SR = nice_source_range(array_expr_cptr->getSourceRange(), (*this).m_Rewrite);
if (index_expr_SR.isValid() && array_expr_SR.isValid()) {
std::string index_expr_text = (*this).m_Rewrite.getRewrittenText(index_expr_SR);
std::string array_expr_text = (*this).m_Rewrite.getRewrittenText(array_expr_SR);
std::string UO_replacement_text = "((" + array_expr_text + ") + (" + index_expr_text + "))";
if (ConvertToSCPP) {
std::shared_ptr<CExprTextModifier> shptr1 = std::make_shared<CStraightReplacementExprTextModifier>(UO_replacement_text);
(*uocs_shptr_ref).m_expr_text_modifier_stack.push_back(shptr1);
(*uocs_shptr_ref).update_current_text();
(*this).m_Rewrite.ReplaceText(UOSR, (*uocs_shptr_ref).m_current_text_str);
}
}
}
}
}
}
void CConditionalOperatorReconciliation2ReplacementAction::do_replacement(CState1& state1) const {
const clang::ConditionalOperator* CO = m_CO;
const Expr* COND = nullptr;
const Expr* LHS = nullptr;
const Expr* RHS = nullptr;
if (CO) {
COND = CO->getCond();
LHS = CO->getLHS();
RHS = CO->getRHS();
}
const DeclaratorDecl* lhs_DD = m_lhs_DD;
const DeclaratorDecl* rhs_DD = m_rhs_DD;
if ((COND != nullptr) && (LHS != nullptr) && (RHS != nullptr) && (lhs_DD != nullptr) && (rhs_DD != nullptr)) {
bool lhs_is_array = false;
bool lhs_is_dynamic_array = false;
bool lhs_is_native_array = false;
auto COSR = nice_source_range(CO->getSourceRange(), (*this).m_Rewrite);
auto cond_SR = nice_source_range(COND->getSourceRange(), (*this).m_Rewrite);
auto lhs_SR = nice_source_range(LHS->getSourceRange(), (*this).m_Rewrite);
auto rhs_SR = nice_source_range(RHS->getSourceRange(), (*this).m_Rewrite);
if ((COSR.isValid()) && (cond_SR.isValid()) && (lhs_SR.isValid()) && (rhs_SR.isValid())) {
auto res1 = state1.m_ddecl_conversion_state_map.insert(*lhs_DD);
auto ddcs_map_iter = res1.first;
auto& ddcs_ref = (*ddcs_map_iter).second;
/* At the moment we only support the case where the value option expressions are
* just declared variables. */
if (1 <= ddcs_ref.m_indirection_state_stack.size()) {
if ("dynamic array" == ddcs_ref.m_indirection_state_stack[0].m_current) {
lhs_is_dynamic_array = true;
lhs_is_array = true;
} else if ("native array" == ddcs_ref.m_indirection_state_stack[0].m_current) {
lhs_is_native_array = true;
lhs_is_array = true;
} else if ("inferred array" == ddcs_ref.m_indirection_state_stack[0].m_current) {
lhs_is_array = true;
}
} else {
int q = 3;
}
}
bool rhs_is_array = false;
bool rhs_is_dynamic_array = false;
bool rhs_is_native_array = false;
{
auto res1 = state1.m_ddecl_conversion_state_map.insert(*rhs_DD);
auto ddcs_map_iter = res1.first;
auto& ddcs_ref = (*ddcs_map_iter).second;
if (1 <= ddcs_ref.m_indirection_state_stack.size()) {
if ("dynamic array" == ddcs_ref.m_indirection_state_stack[0].m_current) {
rhs_is_dynamic_array = true;
rhs_is_array = true;
} else if ("native array" == ddcs_ref.m_indirection_state_stack[0].m_current) {
rhs_is_native_array = true;
rhs_is_array = true;
} else if ("inferred array" == ddcs_ref.m_indirection_state_stack[0].m_current) {
rhs_is_array = true;
}
} else {
int q = 3;
}
}
if (lhs_is_array && rhs_is_array) {
if (m_var_DD) {
update_declaration(*m_var_DD, (*this).m_Rewrite, state1);
}
std::string CO_prior_text = (*this).m_Rewrite.getRewrittenText(COSR);
std::string CO_replacement_text;
std::string cond_prior_text = (*this).m_Rewrite.getRewrittenText(cond_SR);
std::string cond_replacement_text = cond_prior_text;
std::string lhs_prior_text = (*this).m_Rewrite.getRewrittenText(lhs_SR);
std::string lhs_replacement_text = lhs_prior_text;
std::string rhs_prior_text = (*this).m_Rewrite.getRewrittenText(rhs_SR);
std::string rhs_replacement_text = rhs_prior_text;
static const std::string ara_iter_prefix = "mse::TNullableAnyRandomAccessIterator<";
bool lhs_needs_to_be_wrapped = false;
if ((lhs_is_dynamic_array && (!rhs_is_dynamic_array)) || (lhs_is_native_array && (!rhs_is_native_array))) {
lhs_needs_to_be_wrapped = true;
}
bool rhs_needs_to_be_wrapped = false;
if ((rhs_is_dynamic_array && (!lhs_is_dynamic_array)) || (rhs_is_native_array && (!lhs_is_native_array))) {
rhs_needs_to_be_wrapped = true;
}
auto cocs_iter = state1.m_expr_conversion_state_map.end();
if (lhs_needs_to_be_wrapped || rhs_needs_to_be_wrapped) {
cocs_iter = state1.m_expr_conversion_state_map.find(CO);
if (state1.m_expr_conversion_state_map.end() == cocs_iter) {
auto shptr1 = make_expr_conversion_state_shared_ptr<CConditionalOperatorExprConversionState>(*CO, m_Rewrite);
cocs_iter = state1.m_expr_conversion_state_map.insert(shptr1);
}
}
if (lhs_needs_to_be_wrapped) {
assert(state1.m_expr_conversion_state_map.end() != cocs_iter);
auto lhscs_iter = state1.m_expr_conversion_state_map.find(LHS);
if (state1.m_expr_conversion_state_map.end() != lhscs_iter) {
auto& lhscs_shptr_ref = (*lhscs_iter).second;
bool already_wrapped_flag = false;
if (1 <= (*lhscs_shptr_ref).m_expr_text_modifier_stack.size()) {
auto& last_modifier_ref = (*(*lhscs_shptr_ref).m_expr_text_modifier_stack.back());
if ("nullable any random access iter cast" == last_modifier_ref.species_str()) {
already_wrapped_flag = true;
}
}
if (ConvertToSCPP && (!already_wrapped_flag)) {
auto shptr1 = std::make_shared<CNullableAnyRandomAccessIterCastExprTextModifier>(LHS->getType()->getPointeeType());
(*lhscs_shptr_ref).m_expr_text_modifier_stack.push_back(shptr1);
(*lhscs_shptr_ref).update_current_text();
}
} else {
int q = 7;
}
}
if (rhs_needs_to_be_wrapped) {
assert(state1.m_expr_conversion_state_map.end() != cocs_iter);
auto rhscs_iter = state1.m_expr_conversion_state_map.find(RHS);
if (state1.m_expr_conversion_state_map.end() != rhscs_iter) {
auto& rhscs_shptr_ref = (*rhscs_iter).second;
bool already_wrapped_flag = false;
if (1 <= (*rhscs_shptr_ref).m_expr_text_modifier_stack.size()) {
auto& last_modifier_ref = (*(*rhscs_shptr_ref).m_expr_text_modifier_stack.back());
if ("nullable any random access iter cast" == last_modifier_ref.species_str()) {
already_wrapped_flag = true;
}
}
if (ConvertToSCPP && (!already_wrapped_flag)) {
auto shptr1 = std::make_shared<CNullableAnyRandomAccessIterCastExprTextModifier>(RHS->getType()->getPointeeType());
(*rhscs_shptr_ref).m_expr_text_modifier_stack.push_back(shptr1);
(*rhscs_shptr_ref).update_current_text();
}
} else {
int q = 7;
}
}
if (m_var_DD && (true)) {
assert(state1.m_expr_conversion_state_map.end() != cocs_iter);
auto& cocs_shptr_ref = (*(*cocs_iter).second);
cocs_shptr_ref.update_current_text();
auto res1 = state1.m_ddecl_conversion_state_map.insert(*m_var_DD);
auto ddcs_map_iter = res1.first;
auto& ddcs_ref = (*ddcs_map_iter).second;
ddcs_ref.m_initializer_info_str = " = " + cocs_shptr_ref.m_current_text_str;
update_declaration(*m_var_DD, m_Rewrite, state1);
}
}
}
}
struct CLeadingAddressofOperatorInfo {
bool leading_addressof_operator_detected = false;
const clang::Expr* without_leading_addressof_operator_expr_cptr = nullptr;
const clang::UnaryOperator* addressof_unary_operator_cptr = nullptr;
};
CLeadingAddressofOperatorInfo leading_addressof_operator_info_from_stmt(const clang::Stmt& stmt_cref, int depth = 0) {
CLeadingAddressofOperatorInfo retval;
const clang::Stmt* ST = &stmt_cref;
auto stmt_class = ST->getStmtClass();
auto stmt_class_name = ST->getStmtClassName();
bool process_child_flag = false;
if (clang::Stmt::StmtClass::UnaryOperatorClass == stmt_class) {
auto UO = llvm::cast<const clang::UnaryOperator>(ST);
if (UO) {
if (clang::UnaryOperatorKind::UO_AddrOf == UO->getOpcode()) {
retval.leading_addressof_operator_detected = true;
retval.addressof_unary_operator_cptr = UO;
auto child_iter = ST->child_begin();
if (child_iter != ST->child_end()) {
retval.without_leading_addressof_operator_expr_cptr =
llvm::cast<const clang::Expr>(*child_iter);
} else {
assert(false);
}
}
} else {
assert(false);
}
} else if ((clang::Stmt::StmtClass::ImplicitCastExprClass == stmt_class)) {
auto ICE = llvm::cast<const clang::ImplicitCastExpr>(ST);
if (ICE) {
auto cast_kind_name = ICE->getCastKindName();
auto cast_kind = ICE->getCastKind();
if ((clang::CK_FunctionToPointerDecay == cast_kind)) {
process_child_flag = false;
} else {
if ((clang::CK_ArrayToPointerDecay == cast_kind) || (clang::CK_LValueToRValue == cast_kind)) {
process_child_flag = true;
} else {
process_child_flag = true;
}
}
} else { assert(false); }
} else if ((clang::Stmt::StmtClass::CStyleCastExprClass == stmt_class)) {
auto CSCE = llvm::cast<const clang::CStyleCastExpr>(ST);
if (CSCE) {
auto cast_kind_name = CSCE->getCastKindName();
auto cast_kind = CSCE->getCastKind();
auto qtype = CSCE->getType();
if ((clang::CK_FunctionToPointerDecay == cast_kind)) {
process_child_flag = false;
} else {
if ((clang::CK_ArrayToPointerDecay == cast_kind) || (clang::CK_LValueToRValue == cast_kind)) {
process_child_flag = true;
} else {
process_child_flag = true;
}
}
} else { assert(false); }
} else if ((clang::Stmt::StmtClass::ParenExprClass == stmt_class)) {
process_child_flag = true;
} else if ((clang::Stmt::StmtClass::CallExprClass == stmt_class)) {
process_child_flag = true;
} else if(clang::Stmt::StmtClass::DeclRefExprClass == stmt_class) {
auto DRE = llvm::cast<const clang::DeclRefExpr>(ST);
if (DRE) {
//retval = DRE;
//process_child_flag = true;
} else {
assert(false);
}
} else if(clang::Stmt::StmtClass::MemberExprClass == stmt_class) {
auto ME = llvm::cast<const clang::MemberExpr>(ST);
if (ME) {
//retval = ME;
} else {
assert(false);
}
} else {
if (0 == depth) {
int q = 5;
}
int q = 5;
}
if (process_child_flag) {
auto child_iter = ST->child_begin();
if (child_iter != ST->child_end()) {
if (nullptr != (*child_iter)) {
retval = leading_addressof_operator_info_from_stmt(*(*child_iter), depth+1);
} else {
assert(false);
}
} else {
int q = 5;
}
}
return retval;
}
struct CArrayInferenceInfo {
bool is_an_indirect_type() const {
if (nullptr != ddecl_conversion_state_ptr) {
return (1 <= ddecl_conversion_state_ptr->m_indirection_state_stack.size());
} else {
return false;
}
}
bool update_declaration_flag = false;
bool has_just_been_determined_to_be_an_array = false;
size_t indirection_level = 0;
const DeclaratorDecl* ddecl_cptr = nullptr;
CDDeclConversionState* ddecl_conversion_state_ptr = nullptr;
const clang::Expr* declaration_expr_cptr = nullptr;
};
CArrayInferenceInfo infer_array_type_info_from_stmt_indirection_stack(CDDeclConversionState& ddcs_ref,
const std::vector<std::string>& stmt_indirection_stack, CState1& state1_ref) {
CArrayInferenceInfo retval;
auto DD = ddcs_ref.m_ddecl_cptr;
if (!DD) { assert(false); return retval; }
for (size_t i = 0; ((i < ddcs_ref.m_indirection_state_stack.size())
&& (i < stmt_indirection_stack.size())); i += 1) {
if (("" == stmt_indirection_stack[i])) {
/* We're using the empty string as a generic state for the "terminal level of indirection"
* when we don't want to bother specifying a specific state. */
retval.indirection_level = i;
} else if ("native pointer" == ddcs_ref.m_indirection_state_stack[i].m_current) {
if (("ArraySubscriptExpr" == stmt_indirection_stack[i])
|| ("pointer arithmetic" == stmt_indirection_stack[i])) {
ddcs_ref.m_indirection_state_stack[i].m_current = "inferred array";
retval.update_declaration_flag = true;
state1_ref.m_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1_ref, CDDeclIndirection(*DD, i));
} else if (("malloc target" == stmt_indirection_stack[i])) {
ddcs_ref.m_indirection_state_stack[i].m_current = "malloc target";
retval.indirection_level = i;
} else if (("set to null" == stmt_indirection_stack[i]) ||
("memset/cpy target" == stmt_indirection_stack[i])) {
retval.indirection_level = i;
}
} else if ("malloc target" == ddcs_ref.m_indirection_state_stack[i].m_current) {
if (("ArraySubscriptExpr" == stmt_indirection_stack[i])
|| ("pointer arithmetic" == stmt_indirection_stack[i])) {
ddcs_ref.m_indirection_state_stack[i].m_current = "dynamic array";
retval.update_declaration_flag = true;
state1_ref.m_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1_ref, CDDeclIndirection(*DD, i));
state1_ref.m_dynamic_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1_ref, CDDeclIndirection(*DD, i));
}
} else if ("inferred array" == ddcs_ref.m_indirection_state_stack[i].m_current) {
if (("malloc target" == stmt_indirection_stack[i]) ||
("set to null" == stmt_indirection_stack[i])) {
ddcs_ref.m_indirection_state_stack[i].m_current = "dynamic array";
retval.update_declaration_flag = true;
retval.has_just_been_determined_to_be_an_array = true;
retval.indirection_level = i;
state1_ref.m_dynamic_array2_contingent_replacement_map.do_and_dispose_matching_replacements(state1_ref, CDDeclIndirection(*DD, i));
} else if (("memset/cpy target" == stmt_indirection_stack[i])) {
retval.has_just_been_determined_to_be_an_array = true;
retval.indirection_level = i;
}
} else if ("dynamic array" == ddcs_ref.m_indirection_state_stack[i].m_current) {
if (("malloc target" == stmt_indirection_stack[i]) ||
("set to null" == stmt_indirection_stack[i])) {
retval.has_just_been_determined_to_be_an_array = true;
retval.indirection_level = i;
}
}
}
return retval;
}
/* We are trying to determine, for each and every pointer, whether or not it is being used as an
* array iterator. So this function takes an expression using a declared (pointer) variable
* and notes when the (pointer) variable, or any dereference of the
* (pointer) variable, is being used as an array iterator. So for example, given a declaration,
* say, "int*** ptr1;" and an expression, say, "(*(ptr1[3]))[5]", it will note the two levels
* of dereference/"indirection" that are being used as array iterators/pointers. Upon determining
* that a pointer (or a dereference/indirection of the pointer) is being used as an array iterator,
* the function will execute any queued up actions that were contingent on such a determination. */
CArrayInferenceInfo infer_array_type_info_from_stmt(const clang::Stmt& stmt_cref, const std::string& stmt_array_info_str,
CState1& state1_ref, const DeclaratorDecl* DD = nullptr) {
CArrayInferenceInfo retval;
std::vector<std::string> stmt_indirection_stack;
const clang::Expr* expr2 = populateStmtIndirectionStack(stmt_indirection_stack, stmt_cref);
std::reverse(stmt_indirection_stack.begin(), stmt_indirection_stack.end());
stmt_indirection_stack.push_back(stmt_array_info_str);
if (expr2) {
const DeclaratorDecl* l_DD = DD;
std::string expr2_stmt_class_name;
expr2_stmt_class_name = expr2->getStmtClassName();
const DeclaratorDecl* expr2_DD = nullptr;
if (clang::Stmt::StmtClass::DeclRefExprClass == expr2->getStmtClass()) {
auto expr2_DRE = llvm::cast<const clang::DeclRefExpr>(expr2);
if (expr2_DRE) {
auto expr2_decl = expr2_DRE->getDecl();
expr2_DD = dynamic_cast<const DeclaratorDecl*>(expr2_decl);
} else { assert(false); }
} else if (clang::Stmt::StmtClass::MemberExprClass == expr2->getStmtClass()) {
auto expr2_ME = llvm::cast<const clang::MemberExpr>(expr2);
if (expr2_ME) {
auto expr2_FD = dynamic_cast<const clang::FieldDecl*>(expr2_ME->getMemberDecl());
if (expr2_FD) {
expr2_DD = expr2_FD;
} else { assert(false); }
} else { assert(false); }
}
if (expr2_DD) {
auto expr2_QT = expr2_DD->getType();
auto expr2_type_str = expr2_QT.getAsString();
std::string expr2_variable_name = expr2_DD->getNameAsString();
if (nullptr == l_DD) {
l_DD = expr2_DD;
}
auto res1 = state1_ref.m_ddecl_conversion_state_map.insert(*l_DD);
auto ddcs_map_iter = res1.first;
auto& ddcs_ref = (*ddcs_map_iter).second;
bool update_declaration_flag = res1.second;
auto QT = (*l_DD).getType();
std::string variable_name = (*l_DD).getNameAsString();
if ((expr2_QT == QT) && (expr2_variable_name == variable_name)) {
retval = infer_array_type_info_from_stmt_indirection_stack(ddcs_ref, stmt_indirection_stack, state1_ref);
}
retval.update_declaration_flag |= update_declaration_flag;
retval.ddecl_conversion_state_ptr = &ddcs_ref;
}
retval.ddecl_cptr = expr2_DD;
}
retval.declaration_expr_cptr = expr2;
return retval;
}
/**********************************************************************************************************************/
class MCSSSArrayToPointerDecay : public MatchFinder::MatchCallback
{
public:
MCSSSArrayToPointerDecay (Rewriter &Rewrite, CState1& state1)
: Rewrite(Rewrite), m_state1(state1) {}
virtual void run(const MatchFinder::MatchResult &MR)
{
if (/*SafeSubset && */(MR.Nodes.getNodeAs<clang::CastExpr>("mcsssarraytopointerdecay") != nullptr))
{
const CastExpr* CE = MR.Nodes.getNodeAs<clang::CastExpr>("mcsssarraytopointerdecay");
auto SR = nice_source_range(CE->getSourceRange(), Rewrite);
SourceLocation SL = SR.getBegin();
SourceLocation SLE = SR.getEnd();
ASTContext *const ASTC = MR.Context;
FullSourceLoc FSL = ASTC->getFullLoc(SL);
auto source_location_str = SL.printToString(*MR.SourceManager);
std::string source_text;
if (SL.isValid() && SLE.isValid()) {
source_text = Rewrite.getRewrittenText(SourceRange(SL, SLE));
} else {
return;
}
if (filtered_out_by_location(MR, SL))
{
/*intentionally left blank*/
}
else
{
{
if (false) {
std::cout << "sss1.2:" << "array to pointer decay:";
std::cout << SL.printToString(*MR.SourceManager) << ":" << std::endl;
//XMLDocOut.XMLAddNode(MR.Context, SL, "sss1.2", "array to pointer decay: ");
//JSONDocOUT.JSONAddElement(MR.Context, SL, "sss1.2", "array to pointer decay: ");
}
}
}
}
}
private:
Rewriter &Rewrite;
CState1& m_state1;
};
/**********************************************************************************************************************/
class MCSSSNativePointer : public MatchFinder::MatchCallback
{
public:
MCSSSNativePointer (Rewriter &Rewrite) : Rewrite(Rewrite) {}
virtual void run(const MatchFinder::MatchResult &MR)
{
if (SafeSubset && (MR.Nodes.getNodeAs<clang::VarDecl>("mcsssnativepointer") != nullptr))
{
const VarDecl *VD = MR.Nodes.getNodeAs<clang::VarDecl>("mcsssnativepointer");
auto SR = nice_source_range(VD->getSourceRange(), Rewrite);
SourceLocation SL = SR.getBegin();
SourceLocation SLE = SR.getEnd();
ASTContext* const ASTC = MR.Context;
FullSourceLoc FSL = ASTC->getFullLoc(SL);
auto source_location_str = SL.printToString(*MR.SourceManager);
std::string source_text;
if (SL.isValid() && SLE.isValid()) {
source_text = Rewrite.getRewrittenText(SourceRange(SL, SLE));
} else {
return;
}
if (filtered_out_by_location(MR, SL))
{
/*intentionally left blank*/
}
else
{
{
if (false && SafeSubset) {
std::cout << "sss1.1:" << "native pointer:";
std::cout << SL.printToString(*MR.SourceManager) << ":" << std::endl;
//XMLDocOut.XMLAddNode(MR.Context, SL, "sss1.1", "native pointer: ");
//JSONDocOUT.JSONAddElement(MR.Context, SL, "sss1.1", "native pointer: ");
}
}
}
}
}
virtual void onEndOfTranslationUnit()
{
}
private:
Rewriter &Rewrite;
};
/**********************************************************************************************************************/
class MCSSSVarDecl2 : public MatchFinder::MatchCallback
{
public:
MCSSSVarDecl2 (Rewriter &Rewrite, CState1& state1) :
Rewrite(Rewrite), m_state1(state1) {}
virtual void run(const MatchFinder::MatchResult &MR)
{
const DeclaratorDecl* DD = MR.Nodes.getNodeAs<clang::DeclaratorDecl>("mcsssvardecl");
if ((DD != nullptr))
{
auto SR = nice_source_range(DD->getSourceRange(), Rewrite);
auto decl_source_range = SR;
SourceLocation SL = SR.getBegin();
SourceLocation SLE = SR.getEnd();
QualType QT = DD->getType();
const clang::Type* TP = QT.getTypePtr();
auto qtype_str = QT.getAsString();
ASTContext *const ASTC = MR.Context;
FullSourceLoc FSL = ASTC->getFullLoc(SL);
SourceManager &SM = ASTC->getSourceManager();
auto source_location_str = SL.printToString(*MR.SourceManager);
std::string source_text;
if (SR.isValid()) {
source_text = Rewrite.getRewrittenText(SR);
} else {
return;
}
if (filtered_out_by_location(MR, SL)) {
return void();
}
std::string variable_name = DD->getNameAsString();
auto qualified_name = DD->getQualifiedNameAsString();
static const std::string mse_namespace_str1 = "mse::";
static const std::string mse_namespace_str2 = "::mse::";
if ((0 == qualified_name.compare(0, mse_namespace_str1.size(), mse_namespace_str1))
|| (0 == qualified_name.compare(0, mse_namespace_str2.size(), mse_namespace_str2))) {
int q = 5;
//return;
}
auto res1 = (*this).m_state1.m_ddecl_conversion_state_map.insert(*DD);
auto ddcs_map_iter = res1.first;
auto& ddcs_ref = (*ddcs_map_iter).second;
//bool update_declaration_flag = res1.second;
for (size_t i = 0; (i < ddcs_ref.m_indirection_state_stack.size()); i += 1) {
if ("native array" == ddcs_ref.m_indirection_state_stack[i].m_current) {
m_state1.m_array2_contingent_replacement_map.do_and_dispose_matching_replacements(m_state1, CDDeclIndirection(*DD, i));
}
}
update_declaration(*DD, Rewrite, m_state1);
}
}
virtual void onEndOfTranslationUnit()
{
}
private:
Rewriter &Rewrite;
CState1& m_state1;
};
/**********************************************************************************************************************/
class MCSSSPointerArithmetic2 : public MatchFinder::MatchCallback
{
public:
MCSSSPointerArithmetic2 (Rewriter &Rewrite, CState1& state1)
: Rewrite(Rewrite), m_state1(state1) {}
virtual void run(const MatchFinder::MatchResult &MR)
{
const DeclRefExpr* DRE = MR.Nodes.getNodeAs<clang::DeclRefExpr>("mcssspointerarithmetic");
const MemberExpr* ME = MR.Nodes.getNodeAs<clang::MemberExpr>("mcssspointerarithmetic2");
const Expr* E = MR.Nodes.getNodeAs<clang::Expr>("mcssspointerarithmetic3");
if ((DRE != nullptr) && (E != nullptr))
{
const DeclRefExpr* DRE = MR.Nodes.getNodeAs<clang::DeclRefExpr>("mcssspointerarithmetic");
auto SR = nice_source_range(DRE->getSourceRange(), Rewrite);
SourceLocation SL = SR.getBegin();
SourceLocation SLE = SR.getEnd();
QualType QT = DRE->getType();
const clang::Type* TP = QT.getTypePtr();
ASTContext *const ASTC = MR.Context;
FullSourceLoc FSL = ASTC->getFullLoc(SL);
SourceManager &SM = ASTC->getSourceManager();
auto source_location_str = SL.printToString(*MR.SourceManager);
std::string source_text;
if (SL.isValid() && SLE.isValid()) {
source_text = Rewrite.getRewrittenText(SourceRange(SL, SLE));
} else {
return;
}
if (filtered_out_by_location(MR, SL)) {
return void();
}
auto decl = DRE->getDecl();
auto DD = dynamic_cast<const DeclaratorDecl*>(decl);
const clang::FieldDecl* FD = nullptr;
if (nullptr != ME) {
auto member_decl = ME->getMemberDecl();
FD = dynamic_cast<const clang::FieldDecl*>(ME->getMemberDecl());
}
if (nullptr != FD) {
DD = FD;
}
if (!DD) {
return;
} else {
auto decl_source_range = nice_source_range(DD->getSourceRange(), Rewrite);
auto decl_source_location_str = decl_source_range.getBegin().printToString(*MR.SourceManager);
std::string decl_source_text;
if (decl_source_range.isValid()) {
decl_source_text = Rewrite.getRewrittenText(decl_source_range);
} else {
return;
}
QT = DD->getType();
std::string variable_name = DD->getNameAsString();
auto qualified_name = DD->getQualifiedNameAsString();
static const std::string mse_namespace_str1 = "mse::";
static const std::string mse_namespace_str2 = "::mse::";
if ((0 == qualified_name.compare(0, mse_namespace_str1.size(), mse_namespace_str1))
|| (0 == qualified_name.compare(0, mse_namespace_str2.size(), mse_namespace_str2))) {
return;
}
auto res2 = infer_array_type_info_from_stmt(*E, "pointer arithmetic", (*this).m_state1, DD);
if (res2.update_declaration_flag) {
update_declaration(*DD, Rewrite, m_state1);
}
}
}
}
private:
Rewriter &Rewrite;
CState1& m_state1;
};
/**********************************************************************************************************************/
class MCSSSMalloc2 : public MatchFinder::MatchCallback
{
public:
MCSSSMalloc2 (Rewriter &Rewrite, CState1& state1) :
Rewrite(Rewrite), m_state1(state1) {}
virtual void run(const MatchFinder::MatchResult &MR)
{
const BinaryOperator* BO = MR.Nodes.getNodeAs<clang::BinaryOperator>("mcsssmalloc1");
const Expr* LHS = nullptr;
if (BO != nullptr) {
LHS = BO->getLHS();
}
const CallExpr* CE = MR.Nodes.getNodeAs<clang::CallExpr>("mcsssmalloc2");
const DeclRefExpr* DRE = MR.Nodes.getNodeAs<clang::DeclRefExpr>("mcsssmalloc3");
const MemberExpr* ME = MR.Nodes.getNodeAs<clang::MemberExpr>("mcsssmalloc4");
if ((BO != nullptr) && (LHS != nullptr) && (CE != nullptr) && (DRE != nullptr))
{
auto BOSR = nice_source_range(BO->getSourceRange(), Rewrite);
SourceLocation BOSL = BOSR.getBegin();
SourceLocation BOSLE = BOSR.getEnd();
ASTContext *const ASTC = MR.Context;
FullSourceLoc FBOSL = ASTC->getFullLoc(BOSL);
SourceManager &SM = ASTC->getSourceManager();
auto source_location_str = BOSL.printToString(*MR.SourceManager);
std::string source_text;
if (BOSL.isValid() && BOSLE.isValid()) {
source_text = Rewrite.getRewrittenText(SourceRange(BOSL, BOSLE));
} else {
return;
}
if (filtered_out_by_location(MR, BOSL)) {
return void();
}
auto function_decl = CE->getDirectCallee();
auto num_args = CE->getNumArgs();
if (function_decl && ((1 == num_args) || (2 == num_args))) {
std::string function_name = function_decl->getNameAsString();
static const std::string alloc_str = "alloc";
static const std::string realloc_str = "realloc";
auto lc_function_name = tolowerstr(function_name);
bool ends_with_alloc = ((lc_function_name.size() >= alloc_str.size())
&& (0 == lc_function_name.compare(lc_function_name.size() - alloc_str.size(), alloc_str.size(), alloc_str)));
bool ends_with_realloc = (ends_with_alloc && (lc_function_name.size() >= realloc_str.size())
&& (0 == lc_function_name.compare(lc_function_name.size() - realloc_str.size(), realloc_str.size(), realloc_str)));
bool still_potentially_valid1 = (ends_with_alloc && (1 == num_args)) || (ends_with_realloc && (2 == num_args));
if (still_potentially_valid1) {
auto iter = CE->arg_begin();
if (ends_with_realloc) {
iter++;
}
bool argIsIntegerType = false;
if (*iter) {
argIsIntegerType = (*iter)->getType().split().asPair().first->isIntegerType();
}
if (argIsIntegerType) {
auto arg_source_range = nice_source_range((*iter)->getSourceRange(), Rewrite);
std::string arg_source_text;
if (arg_source_range.isValid()) {
arg_source_text = Rewrite.getRewrittenText(arg_source_range);
//auto arg_source_text_sans_ws = with_whitespace_removed(arg_source_text);
bool asterisk_found = false;
auto sizeof_start_index = arg_source_text.find("sizeof(");
if (std::string::npos != sizeof_start_index) {
auto sizeof_end_index = arg_source_text.find(")", sizeof_start_index);
if (std::string::npos != sizeof_end_index) {
assert(sizeof_end_index > sizeof_start_index);
std::string before_str = arg_source_text.substr(0, sizeof_start_index);
std::string after_str;
if (sizeof_end_index + 1 < arg_source_text.size()) {
after_str = arg_source_text.substr(sizeof_end_index + 1);
}
auto index = before_str.size() - 1;
while (0 <= index) {
if ('*' == before_str[index]) {
asterisk_found = true;
}
if (!std::isspace(before_str[index])) {
break;
}
index -= 1;
}
if (asterisk_found) {
before_str = before_str.substr(0, index);
} else {
size_t index2 = 0;
while (after_str.size() > index2) {
if ('*' == after_str[index2]) {
asterisk_found = true;
}
if (!std::isspace(after_str[index2])) {
break;
}
index2 += 1;
}
if (asterisk_found) {
after_str = after_str.substr(index2 + 1);
}
}
}
}
if (true || asterisk_found) {
/* The argument is in the form "something * sizeof(something_else)" or
* "sizeof(something) * something_else". So we're just going to assume that
* this is an instance of an array being allocated. */
std::string num_elements_text/* = before_str + after_str*/;
QualType QT;
std::string element_type_str;
clang::SourceRange decl_source_range;
std::string variable_name;
std::string bo_replacement_code;
const clang::DeclaratorDecl* DD = nullptr;
auto lhs_QT = LHS->getType();
auto decl = DRE->getDecl();
DD = dynamic_cast<const DeclaratorDecl*>(decl);
auto VD = dynamic_cast<const VarDecl*>(decl);
const clang::FieldDecl* FD = nullptr;
if (nullptr != ME) {
auto member_decl = ME->getMemberDecl();
FD = dynamic_cast<const clang::FieldDecl*>(ME->getMemberDecl());
}
if (nullptr != FD) {
DD = FD;
} else if (nullptr != VD) {
DD = VD;
} else {
int q = 7;
}
if (nullptr != DD) {
auto decl_source_range = nice_source_range(DD->getSourceRange(), Rewrite);
auto decl_source_location_str = decl_source_range.getBegin().printToString(*MR.SourceManager);
std::string decl_source_text;
if (decl_source_range.isValid()) {
decl_source_text = Rewrite.getRewrittenText(decl_source_range);
} else {
return;
}
QT = DD->getType();
variable_name = DD->getNameAsString();
auto qualified_name = DD->getQualifiedNameAsString();
static const std::string mse_namespace_str1 = "mse::";
static const std::string mse_namespace_str2 = "::mse::";
if ((0 == qualified_name.compare(0, mse_namespace_str1.size(), mse_namespace_str1))
|| (0 == qualified_name.compare(0, mse_namespace_str2.size(), mse_namespace_str2))) {
return;
}
auto res2 = infer_array_type_info_from_stmt(*LHS, "malloc target", (*this).m_state1, DD);
if (res2.update_declaration_flag) {
update_declaration(*DD, Rewrite, m_state1);
}
const clang::Type* lhs_TP = lhs_QT.getTypePtr();
auto lhs_type_str = lhs_QT.getAsString();
std::string lhs_element_type_str;
if (lhs_TP->isArrayType()) {
auto ATP = llvm::cast<const clang::ArrayType>(lhs_TP);
assert(nullptr != ATP);
auto element_type = ATP->getElementType();
auto type_str = element_type.getAsString();
if (("char" != type_str) && ("const char" != type_str)) {
lhs_element_type_str = type_str;
}
} else if (lhs_TP->isPointerType()) {
auto TPP = llvm::cast<const clang::PointerType>(lhs_TP);
assert(nullptr != TPP);
auto target_type = TPP->getPointeeType();
auto type_str = target_type.getAsString();
if (("char" != type_str) && ("const char" != type_str)) {
lhs_element_type_str = type_str;
}
}
if ("" != lhs_element_type_str) {
num_elements_text = "(";
num_elements_text += arg_source_text;
num_elements_text += ") / sizeof(";
num_elements_text += lhs_element_type_str;
num_elements_text += ")";
auto lhs_source_range = nice_source_range(LHS->getSourceRange(), Rewrite);
auto lhs_source_text = Rewrite.getRewrittenText(lhs_source_range);
bo_replacement_code += "(" + lhs_source_text + ")";
bo_replacement_code += ".resize(";
bo_replacement_code += num_elements_text;
bo_replacement_code += ")";
auto decl_source_location_str = decl_source_range.getBegin().printToString(*MR.SourceManager);
std::string decl_source_text;
if (decl_source_range.isValid()) {
decl_source_text = Rewrite.getRewrittenText(decl_source_range);
} else {
return;
}
auto BOSR = clang::SourceRange(BOSL, BOSLE);
if (ConvertToSCPP && decl_source_range.isValid() && (BOSR.isValid())
&& (nullptr != res2.ddecl_conversion_state_ptr)) {
auto cr_shptr = std::make_shared<CMallocArray2ReplacementAction>(Rewrite, MR, CDDeclIndirection(*DD, res2.indirection_level), BO, bo_replacement_code);
if ((*(res2.ddecl_conversion_state_ptr)).has_been_determined_to_be_an_array(res2.indirection_level)) {
(*cr_shptr).do_replacement(m_state1);
} else {
m_state1.m_dynamic_array2_contingent_replacement_map.insert(cr_shptr);
}
} else {
int q = 7;
}
}
}
int q = 5;
}
} else {
int q = 5;
}
int q = 5;
}
}
}
}
}
private:
Rewriter &Rewrite;
CState1& m_state1;
};
class MCSSSMallocInitializer2 : public MatchFinder::MatchCallback
{
public:
MCSSSMallocInitializer2 (Rewriter &Rewrite, CState1& state1) :
Rewrite(Rewrite), m_state1(state1) {}
virtual void run(const MatchFinder::MatchResult &MR)
{
const DeclStmt* DS = MR.Nodes.getNodeAs<clang::DeclStmt>("mcsssmallocinitializer1");
const CallExpr* CE = MR.Nodes.getNodeAs<clang::CallExpr>("mcsssmallocinitializer2");
const DeclaratorDecl* DD = MR.Nodes.getNodeAs<clang::DeclaratorDecl>("mcsssmallocinitializer3");
if ((DS != nullptr) && (CE != nullptr) && (DD != nullptr))
{
auto DSSR = nice_source_range(DS->getSourceRange(), Rewrite);
SourceLocation DSSL = DSSR.getBegin();
SourceLocation DSSLE = DSSR.getEnd();
ASTContext *const ASTC = MR.Context;
FullSourceLoc FDSSL = ASTC->getFullLoc(DSSL);
SourceManager &SM = ASTC->getSourceManager();
auto source_location_str = DSSL.printToString(*MR.SourceManager);
std::string source_text;
if (DSSL.isValid() && DSSLE.isValid()) {
source_text = Rewrite.getRewrittenText(SourceRange(DSSL, DSSLE));
} else {
return;
}
if (filtered_out_by_location(MR, DSSL)) {
return void();
}
if (std::string::npos != source_location_str.find("288")) {
int q = 5;
}
auto function_decl = CE->getDirectCallee();
auto num_args = CE->getNumArgs();
if (function_decl && ((1 == num_args) || (2 == num_args))) {
std::string function_name = function_decl->getNameAsString();
static const std::string alloc_str = "alloc";
static const std::string realloc_str = "realloc";
auto lc_function_name = tolowerstr(function_name);
bool ends_with_alloc = ((lc_function_name.size() >= alloc_str.size())
&& (0 == lc_function_name.compare(lc_function_name.size() - alloc_str.size(), alloc_str.size(), alloc_str)));
bool ends_with_realloc = (ends_with_alloc && (lc_function_name.size() >= realloc_str.size())
&& (0 == lc_function_name.compare(lc_function_name.size() - realloc_str.size(), realloc_str.size(), realloc_str)));
bool still_potentially_valid1 = (ends_with_alloc && (1 == num_args)) || (ends_with_realloc && (2 == num_args));
if (still_potentially_valid1) {
auto iter = CE->arg_begin();
if (ends_with_realloc) {
iter++;
}
{
auto arg_source_range = nice_source_range((*iter)->getSourceRange(), Rewrite);
std::string arg_source_text;
if (arg_source_range.isValid()) {
arg_source_text = Rewrite.getRewrittenText(arg_source_range);
//auto arg_source_text_sans_ws = with_whitespace_removed(arg_source_text);
bool asterisk_found = false;
auto sizeof_start_index = arg_source_text.find("sizeof(");
if (std::string::npos != sizeof_start_index) {
auto sizeof_end_index = arg_source_text.find(")", sizeof_start_index);
if (std::string::npos != sizeof_end_index) {
assert(sizeof_end_index > sizeof_start_index);
std::string before_str = arg_source_text.substr(0, sizeof_start_index);
std::string after_str;
if (sizeof_end_index + 1 < arg_source_text.size()) {
after_str = arg_source_text.substr(sizeof_end_index + 1);
}
auto index = before_str.size() - 1;
while (0 <= index) {
if ('*' == before_str[index]) {
asterisk_found = true;
}
if (!std::isspace(before_str[index])) {
break;
}
index -= 1;
}
if (asterisk_found) {
before_str = before_str.substr(0, index);
} else {
size_t index2 = 0;
while (after_str.size() > index2) {
if ('*' == after_str[index2]) {
asterisk_found = true;
}
if (!std::isspace(after_str[index2])) {
break;
}
index2 += 1;
}
if (asterisk_found) {
after_str = after_str.substr(index2 + 1);
}
}
}
}
if (true || asterisk_found) {
/* The argument is in the form "something * sizeof(something_else)" or
* "sizeof(something) * something_else". So we're just going to assume that
* this is an instance of an array being allocated. */
std::string num_elements_text/* = before_str + after_str*/;
if (nullptr != DD) {
auto decl_source_range = nice_source_range(DD->getSourceRange(), Rewrite);
auto decl_source_location_str = decl_source_range.getBegin().printToString(*MR.SourceManager);
std::string decl_source_text;
if (decl_source_range.isValid()) {
decl_source_text = Rewrite.getRewrittenText(decl_source_range);
} else {
return;
}
QualType QT = DD->getType();
auto variable_name = DD->getNameAsString();
auto qualified_name = DD->getQualifiedNameAsString();
static const std::string mse_namespace_str1 = "mse::";
static const std::string mse_namespace_str2 = "::mse::";
if ((0 == qualified_name.compare(0, mse_namespace_str1.size(), mse_namespace_str1))
|| (0 == qualified_name.compare(0, mse_namespace_str2.size(), mse_namespace_str2))) {
return;
}
auto res1 = (*this).m_state1.m_ddecl_conversion_state_map.insert(*DD);
auto ddcs_map_iter = res1.first;
auto& ddcs_ref = (*ddcs_map_iter).second;
bool update_declaration_flag = res1.second;
bool lhs_has_been_determined_to_be_an_array = false;
if ("native pointer" == ddcs_ref.m_indirection_state_stack[0].m_current) {
ddcs_ref.m_indirection_state_stack[0].m_current = "malloc target";
} else if ("inferred array" == ddcs_ref.m_indirection_state_stack[0].m_current) {
ddcs_ref.m_indirection_state_stack[0].m_current = "dynamic array";
lhs_has_been_determined_to_be_an_array = true;
//update_declaration_flag = true;
m_state1.m_dynamic_array2_contingent_replacement_map.do_and_dispose_matching_replacements(m_state1, CDDeclIndirection(*DD, 0));
} else if ("dynamic array" == ddcs_ref.m_indirection_state_stack[0].m_current) {
lhs_has_been_determined_to_be_an_array = true;
} else {
assert("native array" != ddcs_ref.m_indirection_state_stack[0].m_current);
}
const clang::Type* TP = QT.getTypePtr();
auto lhs_type_str = QT.getAsString();
std::string element_type_str;
if (TP->isArrayType()) {
auto ATP = llvm::cast<const clang::ArrayType>(TP);
assert(nullptr != ATP);
auto element_type = ATP->getElementType();
auto type_str = element_type.getAsString();
if (("char" != type_str) && ("const char" != type_str)) {
element_type_str = type_str;
}
} else if (TP->isPointerType()) {
auto TPP = llvm::cast<const clang::PointerType>(TP);
assert(nullptr != TPP);
auto target_type = TPP->getPointeeType();
auto type_str = target_type.getAsString();
if (("char" != type_str) && ("const char" != type_str)) {
element_type_str = type_str;
}
}
if ("" != element_type_str) {
num_elements_text = "(";
num_elements_text += arg_source_text;
if (true || (("void" != element_type_str) && ("const void" != element_type_str))) {
num_elements_text += ") / sizeof(";
num_elements_text += element_type_str;
} else {
/* todo: something */
}
num_elements_text += ")";
std::string initializer_info_str = "(" + num_elements_text + ")";
auto decl_source_location_str = decl_source_range.getBegin().printToString(*MR.SourceManager);
std::string decl_source_text;
if (decl_source_range.isValid()) {
decl_source_text = Rewrite.getRewrittenText(decl_source_range);
} else {
return;
}
auto DSSR = clang::SourceRange(DSSL, DSSLE);
if (ConvertToSCPP && decl_source_range.isValid() && (DSSR.isValid())) {
auto cr_shptr = std::make_shared<CMallocInitializerArray2ReplacementAction>(Rewrite, MR, CDDeclIndirection(*DD, 0/*indirection_level*/), DS, initializer_info_str);
if (lhs_has_been_determined_to_be_an_array) {
(*cr_shptr).do_replacement(m_state1);
} else {
m_state1.m_dynamic_array2_contingent_replacement_map.insert(cr_shptr);
}
int q = 3;
} else {
int q = 7;
}
}
}
int q = 5;
}
} else {
int q = 5;
}
int q = 5;
}
}
}
}
}
private:
Rewriter &Rewrite;
CState1& m_state1;
};
class MCSSSFree2 : public MatchFinder::MatchCallback
{
public:
MCSSSFree2 (Rewriter &Rewrite, CState1& state1) :
Rewrite(Rewrite), m_state1(state1) {}
virtual void run(const MatchFinder::MatchResult &MR)
{
const CallExpr* CE = MR.Nodes.getNodeAs<clang::CallExpr>("mcsssfree1");
const DeclRefExpr* DRE = MR.Nodes.getNodeAs<clang::DeclRefExpr>("mcsssfree2");
const MemberExpr* ME = MR.Nodes.getNodeAs<clang::MemberExpr>("mcsssfree3");
if ((CE != nullptr) && (DRE != nullptr))
{
auto CESR = nice_source_range(CE->getSourceRange(), Rewrite);
SourceLocation CESL = CESR.getBegin();
SourceLocation CESLE = CESR.getEnd();
ASTContext *const ASTC = MR.Context;
FullSourceLoc FCESL = ASTC->getFullLoc(CESL);
SourceManager &SM = ASTC->getSourceManager();
auto source_location_str = CESL.printToString(*MR.SourceManager);
std::string source_text;
if (CESL.isValid() && CESLE.isValid()) {
source_text = Rewrite.getRewrittenText(SourceRange(CESL, CESLE));
} else {
return;
}
if (filtered_out_by_location(MR, CESL)) {
return void();
}
auto function_decl = CE->getDirectCallee();
auto num_args = CE->getNumArgs();
if (function_decl && (1 == num_args)) {
{
std::string function_name = function_decl->getNameAsString();
static const std::string free_str = "free";
auto lc_function_name = tolowerstr(function_name);
bool ends_with_free = ((lc_function_name.size() >= free_str.size())
&& (0 == lc_function_name.compare(lc_function_name.size() - free_str.size(), free_str.size(), free_str)));
if (ends_with_free) {
auto arg_iter = CE->arg_begin();
assert((*arg_iter)->getType().getTypePtrOrNull());
auto arg_source_range = nice_source_range((*arg_iter)->getSourceRange(), Rewrite);
std::string arg_source_text;
if (arg_source_range.isValid()) {
arg_source_text = Rewrite.getRewrittenText(arg_source_range);
//auto arg_source_text_sans_ws = with_whitespace_removed(arg_source_text);
QualType QT;
std::string variable_name;
std::string ce_replacement_code;
auto res2 = infer_array_type_info_from_stmt(*(*(CE->arg_begin())), "malloc target", (*this).m_state1);
auto DD = res2.ddecl_cptr;
if (res2.update_declaration_flag) {
update_declaration(*DD, Rewrite, m_state1);
}
if (nullptr != DD) {
auto decl_source_range = nice_source_range(DD->getSourceRange(), Rewrite);
auto decl_source_location_str = decl_source_range.getBegin().printToString(*MR.SourceManager);
std::string decl_source_text;
if (decl_source_range.isValid()) {
decl_source_text = Rewrite.getRewrittenText(decl_source_range);
} else {
return;
}
QT = DD->getType();
variable_name = DD->getNameAsString();
auto qualified_name = DD->getQualifiedNameAsString();
static const std::string mse_namespace_str1 = "mse::";
static const std::string mse_namespace_str2 = "::mse::";
if ((0 == qualified_name.compare(0, mse_namespace_str1.size(), mse_namespace_str1))
|| (0 == qualified_name.compare(0, mse_namespace_str2.size(), mse_namespace_str2))) {
return;
}
const clang::Type* TP = QT.getTypePtr();
auto type_str = QT.getAsString();
std::string element_type_str;
if (TP->isArrayType()) {
auto ATP = llvm::cast<const clang::ArrayType>(TP);
assert(nullptr != ATP);
auto element_type = ATP->getElementType();
auto type_str = element_type.getAsString();
if (("char" != type_str) && ("const char" != type_str)) {
element_type_str = type_str;
}
} else if (TP->isPointerType()) {
auto TPP = llvm::cast<const clang::PointerType>(TP);
assert(nullptr != TPP);
auto target_type = TPP->getPointeeType();
auto type_str = target_type.getAsString();
if (("char" != type_str) && ("const char" != type_str)) {
element_type_str = type_str;
}
}
if ("" != element_type_str) {
ce_replacement_code = "(" + arg_source_text + ")";
ce_replacement_code += ".resize(0)";
if (ConvertToSCPP && decl_source_range.isValid() && (CESR.isValid())
&& (nullptr != res2.ddecl_conversion_state_ptr)) {
auto cr_shptr = std::make_shared<CFreeDynamicArray2ReplacementAction>(Rewrite, MR, CDDeclIndirection(*(res2.ddecl_cptr), res2.indirection_level), CE, ce_replacement_code);
if ((*(res2.ddecl_conversion_state_ptr)).has_been_determined_to_be_an_array(res2.indirection_level)) {
(*cr_shptr).do_replacement(m_state1);
} else {
m_state1.m_dynamic_array2_contingent_replacement_map.insert(cr_shptr);
}
} else {
int q = 7;
}
}
}
int q = 5;
} else {
int q = 5;
}
int q = 5;
}
}
}
}
}
private:
Rewriter &Rewrite;
CState1& m_state1;
};
class MCSSSSetToNull2 : public MatchFinder::MatchCallback
{
public:
MCSSSSetToNull2 (Rewriter &Rewrite, CState1& state1) :
Rewrite(Rewrite), m_state1(state1) {}
virtual void run(const MatchFinder::MatchResult &MR)
{
const BinaryOperator* BO = MR.Nodes.getNodeAs<clang::BinaryOperator>("mcssssettonull1");
const Expr* RHS = nullptr;
const Expr* LHS = nullptr;
if (BO != nullptr) {
RHS = BO->getRHS();
LHS = BO->getLHS();
}
const DeclRefExpr* DRE = MR.Nodes.getNodeAs<clang::DeclRefExpr>("mcssssettonull3");
const MemberExpr* ME = MR.Nodes.getNodeAs<clang::MemberExpr>("mcssssettonull4");
if ((BO != nullptr) && (RHS != nullptr) && (LHS != nullptr) && (DRE != nullptr))
{
auto BOSR = nice_source_range(BO->getSourceRange(), Rewrite);
SourceLocation BOSL = BOSR.getBegin();
SourceLocation BOSLE = BOSR.getEnd();
ASTContext *const ASTC = MR.Context;
FullSourceLoc FBOSL = ASTC->getFullLoc(BOSL);
SourceManager &SM = ASTC->getSourceManager();
auto source_location_str = BOSL.printToString(*MR.SourceManager);
std::string source_text;
if (BOSL.isValid() && BOSLE.isValid()) {
source_text = Rewrite.getRewrittenText(SourceRange(BOSL, BOSLE));
} else {
return;
}
if (filtered_out_by_location(MR, BOSL)) {
return void();
}
Expr::NullPointerConstantKind kind = RHS->isNullPointerConstant(*ASTC, Expr::NullPointerConstantValueDependence());
if (clang::Expr::NPCK_NotNull != kind) {
auto lhs_source_range = nice_source_range(LHS->getSourceRange(), Rewrite);
std::string lhs_source_text;
if (lhs_source_range.isValid()) {
lhs_source_text = Rewrite.getRewrittenText(lhs_source_range);
//auto lhs_source_text_sans_ws = with_whitespace_removed(lhs_source_text);
auto lhs_res2 = infer_array_type_info_from_stmt(*LHS, "set to null", (*this).m_state1);
bool lhs_is_an_indirect_type = is_an_indirect_type(LHS->getType());
if (lhs_res2.update_declaration_flag) {
update_declaration(*(lhs_res2.ddecl_cptr), Rewrite, m_state1);
}
auto lhs_QT = LHS->getType();
const clang::Type* lhs_TP = lhs_QT.getTypePtr();
auto lhs_type_str = lhs_QT.getAsString();
std::string lhs_element_type_str;
if (lhs_TP->isArrayType()) {
auto ATP = llvm::cast<const clang::ArrayType>(lhs_TP);
assert(nullptr != ATP);
auto element_type = ATP->getElementType();
auto type_str = element_type.getAsString();
if (("char" != type_str) && ("const char" != type_str)) {
lhs_element_type_str = type_str;
}
} else if (lhs_TP->isPointerType()) {
auto TPP = llvm::cast<const clang::PointerType>(lhs_TP);
assert(nullptr != TPP);
auto target_type = TPP->getPointeeType();
auto type_str = target_type.getAsString();
if (("char" != type_str) && ("const char" != type_str)) {
lhs_element_type_str = type_str;
}
}
if ("" != lhs_element_type_str) {
if (ConvertToSCPP && (lhs_res2.ddecl_conversion_state_ptr) && lhs_is_an_indirect_type) {
auto lhs_source_text = Rewrite.getRewrittenText(lhs_source_range);
std::string bo_replacement_code = "(" + lhs_source_text + ")";
bo_replacement_code += ".resize(0)";
auto cr_shptr = std::make_shared<CSetArrayPointerToNull2ReplacementAction>(Rewrite, MR, CDDeclIndirection(*(lhs_res2.ddecl_cptr), lhs_res2.indirection_level), BO, bo_replacement_code);
if ((*(lhs_res2.ddecl_conversion_state_ptr)).has_been_determined_to_be_an_array(lhs_res2.indirection_level)) {
(*cr_shptr).do_replacement(m_state1);
} else {
m_state1.m_dynamic_array2_contingent_replacement_map.insert(cr_shptr);
}
}
}
int q = 5;
} else {
int q = 5;
}
int q = 5;
}
}
}
private:
Rewriter &Rewrite;
CState1& m_state1;
};
class MCSSSMemset : public MatchFinder::MatchCallback
{
public:
MCSSSMemset (Rewriter &Rewrite, CState1& state1) :
Rewrite(Rewrite), m_state1(state1) {}
virtual void run(const MatchFinder::MatchResult &MR)
{
const CallExpr* CE = MR.Nodes.getNodeAs<clang::CallExpr>("mcsssmemset1");
const DeclRefExpr* DRE = MR.Nodes.getNodeAs<clang::DeclRefExpr>("mcsssmemset2");
const MemberExpr* ME = MR.Nodes.getNodeAs<clang::MemberExpr>("mcsssmemset3");
if ((CE != nullptr) && (DRE != nullptr))
{
auto CESR = nice_source_range(CE->getSourceRange(), Rewrite);
SourceLocation CESL = CESR.getBegin();
SourceLocation CESLE = CESR.getEnd();
ASTContext *const ASTC = MR.Context;
FullSourceLoc FCESL = ASTC->getFullLoc(CESL);
SourceManager &SM = ASTC->getSourceManager();
auto source_location_str = CESL.printToString(*MR.SourceManager);
std::string source_text;
if (CESL.isValid() && CESLE.isValid()) {
source_text = Rewrite.getRewrittenText(SourceRange(CESL, CESLE));
} else {
return;
}
if (filtered_out_by_location(MR, CESL)) {
return void();
}
auto function_decl = CE->getDirectCallee();
auto num_args = CE->getNumArgs();
if (function_decl && (3 == num_args)) {
{
std::string function_name = function_decl->getNameAsString();
static const std::string memset_str = "memset";
if (memset_str == function_name) {
auto iter1 = CE->arg_begin();
assert((*iter1)->getType().getTypePtrOrNull());
auto arg_source_range1 = nice_source_range((*iter1)->getSourceRange(), Rewrite);
auto iter2 = iter1;
iter2++;
assert((*iter2)->getType().getTypePtrOrNull());
auto arg_source_range2 = nice_source_range((*iter2)->getSourceRange(), Rewrite);
auto iter3 = iter2;
iter3++;
assert((*iter3)->getType().getTypePtrOrNull());
auto arg_source_range3 = nice_source_range((*iter3)->getSourceRange(), Rewrite);
std::string arg_source_text1;
std::string arg_source_text2;
std::string arg_source_text3;
if (arg_source_range1.isValid() && arg_source_range2.isValid() && arg_source_range3.isValid()) {
arg_source_text1 = Rewrite.getRewrittenText(arg_source_range1);
arg_source_text2 = Rewrite.getRewrittenText(arg_source_range2);
arg_source_text3 = Rewrite.getRewrittenText(arg_source_range3);
QualType QT;
std::string element_type_str;
clang::SourceRange decl_source_range;
std::string variable_name;
std::string ce_replacement_code;
const clang::DeclaratorDecl* DD = nullptr;
auto decl = DRE->getDecl();
DD = dynamic_cast<const DeclaratorDecl*>(decl);
auto VD = dynamic_cast<const VarDecl*>(decl);
const clang::FieldDecl* FD = nullptr;
if (nullptr != ME) {
auto member_decl = ME->getMemberDecl();
FD = dynamic_cast<const clang::FieldDecl*>(ME->getMemberDecl());
}
if (nullptr != FD) {
DD = FD;
} else if (nullptr != VD) {
DD = VD;
} else {
int q = 7;
}
if (nullptr != DD) {
auto decl_source_range = nice_source_range(DD->getSourceRange(), Rewrite);
auto decl_source_location_str = decl_source_range.getBegin().printToString(*MR.SourceManager);
std::string decl_source_text;
if (decl_source_range.isValid()) {
decl_source_text = Rewrite.getRewrittenText(decl_source_range);
} else {
return;
}
QT = DD->getType();
auto qtype_str = QT.getAsString();
variable_name = DD->getNameAsString();
auto qualified_name = DD->getQualifiedNameAsString();
static const std::string mse_namespace_str1 = "mse::";
static const std::string mse_namespace_str2 = "::mse::";
if ((0 == qualified_name.compare(0, mse_namespace_str1.size(), mse_namespace_str1))
|| (0 == qualified_name.compare(0, mse_namespace_str2.size(), mse_namespace_str2))) {
return;
}
auto res2 = infer_array_type_info_from_stmt(*(*(CE->arg_begin())), "memset/cpy target", (*this).m_state1, DD);
if (res2.update_declaration_flag) {
update_declaration(*DD, Rewrite, m_state1);
}
const clang::Type* arg1_TP = QT.getTypePtr();
auto arg1_type_str = QT.getAsString();
std::string arg1_element_type_str;
if (arg1_TP->isArrayType()) {
auto ATP = llvm::cast<const clang::ArrayType>(arg1_TP);
assert(nullptr != ATP);
auto element_type = ATP->getElementType();
auto type_str = element_type.getAsString();
if (("char" != type_str) && ("const char" != type_str)) {
arg1_element_type_str = type_str;
}
} else if (arg1_TP->isPointerType()) {
auto TPP = llvm::cast<const clang::PointerType>(arg1_TP);
assert(nullptr != TPP);
auto target_type = TPP->getPointeeType();
auto type_str = target_type.getAsString();
if (("char" != type_str) && ("const char" != type_str)) {
arg1_element_type_str = type_str;
}
}
if ("" != arg1_element_type_str) {
ce_replacement_code = "for (size_t i = 0; i < (" + arg_source_text3
+ ")/sizeof(" + arg1_element_type_str + "); i += 1) { ";
ce_replacement_code += "(" + arg_source_text1 + ")[i] = " + arg_source_text2 + "; ";
ce_replacement_code += "}";
if (ConvertToSCPP && decl_source_range.isValid() && (CESR.isValid())
&& (nullptr != res2.ddecl_conversion_state_ptr)) {
auto cr_shptr = std::make_shared<CMemsetArray2ReplacementAction>(Rewrite, MR, CDDeclIndirection(*DD, res2.indirection_level), CE, ce_replacement_code);
if (true || (*(res2.ddecl_conversion_state_ptr)).has_been_determined_to_be_an_array(res2.indirection_level)) {
(*cr_shptr).do_replacement(m_state1);
} else {
m_state1.m_array2_contingent_replacement_map.insert(cr_shptr);
}
} else {
int q = 7;
}
}
}
int q = 5;
} else {
int q = 5;
}
int q = 5;
}
}
}
}
}
private:
Rewriter &Rewrite;
CState1& m_state1;
};
class MCSSSMemcpy : public MatchFinder::MatchCallback
{
public:
MCSSSMemcpy (Rewriter &Rewrite, CState1& state1) :
Rewrite(Rewrite), m_state1(state1) {}
virtual void run(const MatchFinder::MatchResult &MR)
{
const CallExpr* CE = MR.Nodes.getNodeAs<clang::CallExpr>("mcsssmemcpy1");
const DeclRefExpr* DRE = MR.Nodes.getNodeAs<clang::DeclRefExpr>("mcsssmemcpy2");
const MemberExpr* ME = MR.Nodes.getNodeAs<clang::MemberExpr>("mcsssmemcpy3");
if ((CE != nullptr) && (DRE != nullptr))
{
auto CESR = nice_source_range(CE->getSourceRange(), Rewrite);
SourceLocation CESL = CESR.getBegin();
SourceLocation CESLE = CESR.getEnd();
ASTContext *const ASTC = MR.Context;
FullSourceLoc FCESL = ASTC->getFullLoc(CESL);
SourceManager &SM = ASTC->getSourceManager();
auto source_location_str = CESL.printToString(*MR.SourceManager);
std::string source_text;
if (CESL.isValid() && CESLE.isValid()) {
source_text = Rewrite.getRewrittenText(SourceRange(CESL, CESLE));
} else {
return;
}
if (filtered_out_by_location(MR, CESL)) {
return void();
}
auto function_decl = CE->getDirectCallee();
auto num_args = CE->getNumArgs();
if (function_decl && (3 == num_args)) {
{
std::string function_name = function_decl->getNameAsString();
static const std::string memcpy_str = "memcpy";
if (memcpy_str == function_name) {
auto iter1 = CE->arg_begin();
assert((*iter1)->getType().getTypePtrOrNull());
auto arg_source_range1 = nice_source_range((*iter1)->getSourceRange(), Rewrite);
auto iter2 = iter1;
iter2++;
assert((*iter2)->getType().getTypePtrOrNull());
auto arg_source_range2 = nice_source_range((*iter2)->getSourceRange(), Rewrite);
auto iter3 = iter2;
iter3++;
assert((*iter3)->getType().getTypePtrOrNull());
auto arg_source_range3 = nice_source_range((*iter3)->getSourceRange(), Rewrite);
std::string arg_source_text1;
std::string arg_source_text2;
std::string arg_source_text3;
if (arg_source_range1.isValid() && arg_source_range2.isValid() && arg_source_range3.isValid()) {
arg_source_text1 = Rewrite.getRewrittenText(arg_source_range1);
arg_source_text2 = Rewrite.getRewrittenText(arg_source_range2);
arg_source_text3 = Rewrite.getRewrittenText(arg_source_range3);
QualType QT;
clang::SourceRange decl_source_range;
std::string variable_name;
const clang::DeclaratorDecl* DD = nullptr;
CArrayInferenceInfo res2;
auto decl = DRE->getDecl();
DD = dynamic_cast<const DeclaratorDecl*>(decl);
auto VD = dynamic_cast<const VarDecl*>(decl);
const clang::FieldDecl* FD = nullptr;
if (nullptr != ME) {
auto member_decl = ME->getMemberDecl();
FD = dynamic_cast<const clang::FieldDecl*>(ME->getMemberDecl());
}
if (nullptr != FD) {
DD = FD;
} else if (nullptr != VD) {
DD = VD;
} else {
int q = 7;
}
if (nullptr != DD) {
decl_source_range = nice_source_range(DD->getSourceRange(), Rewrite);
auto decl_source_location_str = decl_source_range.getBegin().printToString(*MR.SourceManager);
std::string decl_source_text;
if (decl_source_range.isValid()) {
decl_source_text = Rewrite.getRewrittenText(decl_source_range);
} else {
return;
}
QT = DD->getType();
auto qtype_str = QT.getAsString();
variable_name = DD->getNameAsString();
auto qualified_name = DD->getQualifiedNameAsString();
static const std::string mse_namespace_str1 = "mse::";
static const std::string mse_namespace_str2 = "::mse::";
if ((0 == qualified_name.compare(0, mse_namespace_str1.size(), mse_namespace_str1))
|| (0 == qualified_name.compare(0, mse_namespace_str2.size(), mse_namespace_str2))) {
return;
}
res2 = infer_array_type_info_from_stmt(*(*(CE->arg_begin())), "memset/cpy target", (*this).m_state1, DD);
if (res2.update_declaration_flag) {
update_declaration(*DD, Rewrite, m_state1);
}
}
clang::QualType arg1_QT = (*iter1)->getType();
if (nullptr != DD) {
arg1_QT = QT;
}
const clang::Type* arg1_TP = arg1_QT.getTypePtr();
auto arg1_type_str = arg1_QT.getAsString();
std::string arg1_element_type_str;
if (arg1_TP->isArrayType()) {
auto ATP = llvm::cast<const clang::ArrayType>(arg1_TP);
assert(nullptr != ATP);
auto element_type = ATP->getElementType();
auto type_str = element_type.getAsString();
if (("char" != type_str) && ("const char" != type_str)) {
arg1_element_type_str = type_str;
}
} else if (arg1_TP->isPointerType()) {
auto TPP = llvm::cast<const clang::PointerType>(arg1_TP);
assert(nullptr != TPP);
auto target_type = TPP->getPointeeType();
auto type_str = target_type.getAsString();
if (("char" != type_str) && ("const char" != type_str)) {
arg1_element_type_str = type_str;
}
}
std::string ce_replacement_code;
if (("" != arg1_element_type_str) && ("void" != arg1_element_type_str) && ("const void" != arg1_element_type_str)) {
ce_replacement_code = "for (size_t i = 0; i < (" + arg_source_text3
+ ")/sizeof(" + arg1_element_type_str + "); i += 1) { ";
ce_replacement_code += "(" + arg_source_text1 + ")[i] = (" + arg_source_text2 + ")[i]; ";
ce_replacement_code += "}";
}
if (ConvertToSCPP && (CESR.isValid()) && ("" != ce_replacement_code)) {
auto cr_shptr = std::make_shared<CMemcpyArray2ReplacementAction>(Rewrite, MR, CDDeclIndirection(*DD, res2.indirection_level), CE, ce_replacement_code);
if ((nullptr != res2.ddecl_conversion_state_ptr)) {
if (true || (*(res2.ddecl_conversion_state_ptr)).has_been_determined_to_be_an_array(res2.indirection_level)) {
(*cr_shptr).do_replacement(m_state1);
} else {
m_state1.m_array2_contingent_replacement_map.insert(cr_shptr);
}
} else {
(*cr_shptr).do_replacement(m_state1);
}
} else {
int q = 7;
}
int q = 5;
} else {
int q = 5;
}
int q = 5;
}
}
}
}
}
private:
Rewriter &Rewrite;
CState1& m_state1;
};
/* This class addresses the initialized declarations in the form "type var = cond ? lhs : rhs;". */
class MCSSSConditionalInitializer : public MatchFinder::MatchCallback
{
public:
MCSSSConditionalInitializer (Rewriter &Rewrite, CState1& state1) :
Rewrite(Rewrite), m_state1(state1) {}
virtual void run(const MatchFinder::MatchResult &MR)
{
const DeclStmt* DS = MR.Nodes.getNodeAs<clang::DeclStmt>("mcsssconditionalinitializer1");
const clang::ConditionalOperator* CO = MR.Nodes.getNodeAs<clang::ConditionalOperator>("mcsssconditionalinitializer2");
const Expr* LHS = nullptr;
const Expr* RHS = nullptr;
if (CO) {
LHS = CO->getLHS();
RHS = CO->getRHS();
}
const DeclaratorDecl* DD = MR.Nodes.getNodeAs<clang::DeclaratorDecl>("mcsssconditionalinitializer3");
if ((DS != nullptr) && (LHS != nullptr) && (RHS != nullptr) && (DD != nullptr))
{
auto DSSR = nice_source_range(DS->getSourceRange(), Rewrite);
SourceLocation DSSL = DSSR.getBegin();
SourceLocation DSSLE = DSSR.getEnd();
ASTContext *const ASTC = MR.Context;
FullSourceLoc FDSSL = ASTC->getFullLoc(DSSL);
SourceManager &SM = ASTC->getSourceManager();
auto source_location_str = DSSL.printToString(*MR.SourceManager);
std::string source_text;
if (DSSL.isValid() && DSSLE.isValid()) {
source_text = Rewrite.getRewrittenText(SourceRange(DSSL, DSSLE));
} else {
return;
}
if (filtered_out_by_location(MR, DSSL)) {
return void();
}
auto decl_source_range = nice_source_range(DD->getSourceRange(), Rewrite);
auto decl_source_location_str = decl_source_range.getBegin().printToString(*MR.SourceManager);
std::string decl_source_text;
if (decl_source_range.isValid()) {
decl_source_text = Rewrite.getRewrittenText(decl_source_range);
} else {
return;
}
QualType QT = DD->getType();
auto variable_name = DD->getNameAsString();
auto qualified_name = DD->getQualifiedNameAsString();
static const std::string mse_namespace_str1 = "mse::";
static const std::string mse_namespace_str2 = "::mse::";
if ((0 == qualified_name.compare(0, mse_namespace_str1.size(), mse_namespace_str1))
|| (0 == qualified_name.compare(0, mse_namespace_str2.size(), mse_namespace_str2))) {
return;
}
std::string var_current_state_str;
{
auto res1 = m_state1.m_ddecl_conversion_state_map.insert(*DD);
auto ddcs_map_iter = res1.first;
auto& ddcs_ref = (*ddcs_map_iter).second;
if (1 <= ddcs_ref.m_indirection_state_stack.size()) {
var_current_state_str = ddcs_ref.m_indirection_state_stack[0].m_current;
} else {
int q = 7;
}
}
bool var_has_been_determined_to_be_an_array = false;
if (("inferred array" == var_current_state_str) ||
("dynamic array" == var_current_state_str) ||
("native array" == var_current_state_str)) {
if ("native array" == var_current_state_str) {
assert(false); /* right? */
}
var_has_been_determined_to_be_an_array = true;
}
auto lhs_res2 = infer_array_type_info_from_stmt(*LHS, "", (*this).m_state1);
auto rhs_res2 = infer_array_type_info_from_stmt(*RHS, "", (*this).m_state1);
bool lhs_qualifies = false;
bool rhs_qualifies = false;
if (lhs_res2.ddecl_cptr && lhs_res2.update_declaration_flag) {
update_declaration(*(lhs_res2.ddecl_cptr), Rewrite, m_state1);
}
if (rhs_res2.ddecl_cptr && rhs_res2.update_declaration_flag) {
update_declaration(*(rhs_res2.ddecl_cptr), Rewrite, m_state1);
}
{
auto& res2 = lhs_res2;
if (res2.ddecl_cptr && res2.declaration_expr_cptr) {
std::string variable_name = res2.ddecl_cptr->getNameAsString();
auto QT = res2.ddecl_cptr->getType();
auto LHS_QT = LHS->getType();
/* Currently we only support the case where the value expressions are direct
* references to declared variables. */
if ((QT == LHS_QT)/* && (1 == res2.indirection_level)*/) {
lhs_qualifies = true;
if (ConvertToSCPP && (nullptr != res2.ddecl_conversion_state_ptr)) {
{
/* Here we're establishing and "enforcing" the constraint that the lhs value must
* be of an (array) type that can be assigned to the target variable. */
auto cr_shptr = std::make_shared<CAssignmentTargetConstrainsSourceArray2ReplacementAction>(Rewrite, MR, CDDeclIndirection(*DD, 0), CDDeclIndirection(*(res2.ddecl_cptr) , res2.indirection_level));
if (var_has_been_determined_to_be_an_array) {
(*cr_shptr).do_replacement(m_state1);
} else {
m_state1.m_array2_contingent_replacement_map.insert(cr_shptr);
}
}
{
/* Here we're establishing the constraint in the opposite direction as well. */
auto cr_shptr = std::make_shared<CAssignmentSourceConstrainsTargetArray2ReplacementAction>(Rewrite, MR, CDDeclIndirection(*(res2.ddecl_cptr) , res2.indirection_level), CDDeclIndirection(*DD, 0));
if ((*(res2.ddecl_conversion_state_ptr)).has_been_determined_to_be_an_array(res2.indirection_level)) {
(*cr_shptr).do_replacement(m_state1);
} else {
m_state1.m_array2_contingent_replacement_map.insert(cr_shptr);
}
}
}
}
}
}
{
auto& res2 = rhs_res2;
if (res2.ddecl_cptr && res2.declaration_expr_cptr) {
std::string variable_name = res2.ddecl_cptr->getNameAsString();
auto QT = res2.ddecl_cptr->getType();
auto RHS_QT = RHS->getType();
/* Currently we only support the case where the value expressions are direct
* references to declared variables. */
if (QT == RHS_QT) {
rhs_qualifies = true;
if (ConvertToSCPP && (nullptr != res2.ddecl_conversion_state_ptr)) {
{
/* Here we're establishing and "enforcing" the constraint that the rhs value must
* be of an (array) type that can be assigned to the target variable. */
auto cr_shptr = std::make_shared<CAssignmentTargetConstrainsSourceArray2ReplacementAction>(Rewrite, MR, CDDeclIndirection(*DD, 0), CDDeclIndirection(*(res2.ddecl_cptr) , res2.indirection_level));
if (var_has_been_determined_to_be_an_array) {
(*cr_shptr).do_replacement(m_state1);
} else {
m_state1.m_array2_contingent_replacement_map.insert(cr_shptr);
}
}
{
/* Here we're establishing the constraint in the opposite direction as well. */
auto cr_shptr = std::make_shared<CAssignmentSourceConstrainsTargetArray2ReplacementAction>(Rewrite, MR, CDDeclIndirection(*(res2.ddecl_cptr) , res2.indirection_level), CDDeclIndirection(*DD, 0));
if ((*(res2.ddecl_conversion_state_ptr)).has_been_determined_to_be_an_array(res2.indirection_level)) {
(*cr_shptr).do_replacement(m_state1);
} else {
m_state1.m_array2_contingent_replacement_map.insert(cr_shptr);
}
}
}
}
}
}
if (lhs_qualifies && rhs_qualifies) {
std::string lhs_current_state_str;
{
auto res1 = m_state1.m_ddecl_conversion_state_map.insert(*(lhs_res2.ddecl_cptr));
auto ddcs_map_iter = res1.first;
auto& ddcs_ref = (*ddcs_map_iter).second;
if (1 <= ddcs_ref.m_indirection_state_stack.size()) {
lhs_current_state_str = ddcs_ref.m_indirection_state_stack[0].m_current;
} else {
int q = 7;
}
}
std::string rhs_current_state_str;
{
auto res1 = m_state1.m_ddecl_conversion_state_map.insert(*(rhs_res2.ddecl_cptr));
auto ddcs_map_iter = res1.first;
auto& ddcs_ref = (*ddcs_map_iter).second;
if (1 <= ddcs_ref.m_indirection_state_stack.size()) {
rhs_current_state_str = ddcs_ref.m_indirection_state_stack[0].m_current;
} else {
int q = 7;
}
}
if (ConvertToSCPP) {
/* Here we're establishing and "enforcing" the constraint that the lhs and rhs
* values of the conditional operator must be the same type. */
{
auto cr_shptr = std::make_shared<CConditionalOperatorReconciliation2ReplacementAction>(Rewrite, MR, CDDeclIndirection(*lhs_res2.ddecl_cptr, 0), CO, lhs_res2.ddecl_cptr, rhs_res2.ddecl_cptr, DD);
if ("dynamic array" == lhs_current_state_str) {
(*cr_shptr).do_replacement(m_state1);
} else if ("native array" == lhs_current_state_str) {
(*cr_shptr).do_replacement(m_state1);
} else {
m_state1.m_dynamic_array2_contingent_replacement_map.insert(cr_shptr);
if ("inferred array" == lhs_current_state_str) {
(*cr_shptr).do_replacement(m_state1);
} else {
m_state1.m_array2_contingent_replacement_map.insert(cr_shptr);
}
}
}
{
auto cr_shptr = std::make_shared<CConditionalOperatorReconciliation2ReplacementAction>(Rewrite, MR, CDDeclIndirection(*rhs_res2.ddecl_cptr, 0), CO, lhs_res2.ddecl_cptr, rhs_res2.ddecl_cptr, DD);
if ("dynamic array" == rhs_current_state_str) {
(*cr_shptr).do_replacement(m_state1);
} else if ("native array" == rhs_current_state_str) {
(*cr_shptr).do_replacement(m_state1);
} else {
m_state1.m_dynamic_array2_contingent_replacement_map.insert(cr_shptr);
if ("inferred array" == rhs_current_state_str) {
(*cr_shptr).do_replacement(m_state1);
} else {
m_state1.m_array2_contingent_replacement_map.insert(cr_shptr);
}
}
}
}
}
}
}
private:
Rewriter &Rewrite;
CState1& m_state1;
};
class MCSSSAssignment : public MatchFinder::MatchCallback
{
public:
MCSSSAssignment (Rewriter &Rewrite, CState1& state1) :
Rewrite(Rewrite), m_state1(state1) {}
virtual void run(const MatchFinder::MatchResult &MR)
{
const clang::BinaryOperator* BO = MR.Nodes.getNodeAs<clang::BinaryOperator>("mcsssassignment1");
const Expr* LHS = nullptr;
const Expr* RHS = nullptr;
if (BO) {
LHS = BO->getLHS();
RHS = BO->getRHS();
}
const DeclRefExpr* DRE = MR.Nodes.getNodeAs<clang::DeclRefExpr>("mcsssassignment2");
const clang::CStyleCastExpr* CCE = MR.Nodes.getNodeAs<clang::CStyleCastExpr>("mcsssassignment4");
if ((BO != nullptr) && (LHS != nullptr) && (RHS != nullptr) && (DRE != nullptr))
{
auto BOSR = nice_source_range(BO->getSourceRange(), Rewrite);
SourceLocation BOSL = BOSR.getBegin();
SourceLocation BOSLE = BOSR.getEnd();
ASTContext *const ASTC = MR.Context;
FullSourceLoc FBOSL = ASTC->getFullLoc(BOSL);
SourceManager &SM = ASTC->getSourceManager();
auto source_location_str = BOSL.printToString(*MR.SourceManager);
std::string source_text;
if (BOSL.isValid() && BOSLE.isValid()) {
source_text = Rewrite.getRewrittenText(SourceRange(BOSL, BOSLE));
} else {
return;
}
if (filtered_out_by_location(MR, BOSL)) {
return void();
}
if (std::string::npos != source_location_str.find("129")) {
int q = 5;
}
auto lhs_res2 = infer_array_type_info_from_stmt(*LHS, "", (*this).m_state1);
auto rhs_res2 = infer_array_type_info_from_stmt(*RHS, "", (*this).m_state1);
bool lhs_is_an_indirect_type = is_an_indirect_type(LHS->getType());
bool rhs_is_an_indirect_type = is_an_indirect_type(RHS->getType());
assert(lhs_is_an_indirect_type == rhs_is_an_indirect_type);
if (lhs_res2.ddecl_cptr && lhs_res2.update_declaration_flag) {
update_declaration(*(lhs_res2.ddecl_cptr), Rewrite, m_state1);
}
if (rhs_res2.ddecl_cptr && rhs_res2.update_declaration_flag) {
update_declaration(*(rhs_res2.ddecl_cptr), Rewrite, m_state1);
}
if ((nullptr != CCE) && (rhs_res2.ddecl_conversion_state_ptr)) {
auto cce_QT = CCE->getType();
auto rhs_QT = RHS->getType();
if (cce_QT == rhs_QT) {
CIndirectionStateStack rhs_qtype_indirection_state_stack;
auto direct_rhs_qtype = populateQTypeIndirectionStack(rhs_qtype_indirection_state_stack, rhs_QT);
auto direct_rhs_qtype_str = direct_rhs_qtype.getAsString();
auto casted_expr_ptr = CCE->IgnoreCasts();
if ((rhs_qtype_indirection_state_stack.size() + rhs_res2.indirection_level
== (*(rhs_res2.ddecl_conversion_state_ptr)).m_indirection_state_stack.size())
&& (1 <= (*rhs_res2.ddecl_conversion_state_ptr).m_indirection_state_stack.size())
&& (nullptr != casted_expr_ptr)) {
std::string rhs_ddecl_current_direct_qtype_str = (*rhs_res2.ddecl_conversion_state_ptr).m_current_direct_qtype.getAsString();
auto casted_expr_SR = nice_source_range(casted_expr_ptr->getSourceRange(), Rewrite);
auto CCESR = nice_source_range(CCE->getSourceRange(), Rewrite);
if (CCESR.isValid() && casted_expr_SR.isValid()
&& (("void" == rhs_ddecl_current_direct_qtype_str) || ("const void" == rhs_ddecl_current_direct_qtype_str))) {
if (ConvertToSCPP) {
(*rhs_res2.ddecl_conversion_state_ptr).m_current_direct_qtype = direct_rhs_qtype;
/* This is not the proper way to modify an expression. See the function
* CConditionalOperatorReconciliation2ReplacementAction::do_replacement() for an example of
* the proper way to do it. But for now this is good enough. */
auto casted_expr_text = Rewrite.getRewrittenText(casted_expr_SR);
auto res2 = Rewrite.ReplaceText(CCESR, casted_expr_text);
static const std::string void_str = "void";
auto void_pos = (*rhs_res2.ddecl_conversion_state_ptr).m_initializer_info_str.find(void_str);
if (std::string::npos != void_pos) {
(*rhs_res2.ddecl_conversion_state_ptr).m_initializer_info_str.replace(void_pos, void_str.length(), direct_rhs_qtype_str);
}
update_declaration(*(rhs_res2.ddecl_cptr), Rewrite, m_state1);
}
} else {
if (ConvertToSCPP) {
//(*rhs_res2.ddecl_conversion_state_ptr).m_current_direct_qtype = direct_rhs_qtype;
}
}
} else {
int q = 7;
}
} else {
int q = 7;
}
}
if (ConvertToSCPP && (lhs_res2.ddecl_conversion_state_ptr) && (rhs_res2.ddecl_conversion_state_ptr) && lhs_is_an_indirect_type) {
for (size_t i = 0; (rhs_res2.indirection_level + i < (*(lhs_res2.ddecl_conversion_state_ptr)).m_indirection_state_stack.size())
&& (rhs_res2.indirection_level + i < (*(rhs_res2.ddecl_conversion_state_ptr)).m_indirection_state_stack.size()); i += 1) {
{
/* Here we're establishing and "enforcing" the constraint that the rhs value must
* be of an (array) type that can be assigned to the lhs. */
auto cr_shptr = std::make_shared<CAssignmentTargetConstrainsSourceArray2ReplacementAction>(Rewrite, MR, CDDeclIndirection(*(lhs_res2.ddecl_cptr), lhs_res2.indirection_level + i), CDDeclIndirection(*(rhs_res2.ddecl_cptr), rhs_res2.indirection_level + i));
if ((*(lhs_res2.ddecl_conversion_state_ptr)).has_been_determined_to_be_an_array(lhs_res2.indirection_level + i)) {
(*cr_shptr).do_replacement(m_state1);
} else {
m_state1.m_array2_contingent_replacement_map.insert(cr_shptr);
}
}
{
/* Here we're establishing the constraint in the opposite direction as well. */
auto cr_shptr = std::make_shared<CAssignmentSourceConstrainsTargetArray2ReplacementAction>(Rewrite, MR, CDDeclIndirection(*(rhs_res2.ddecl_cptr), rhs_res2.indirection_level + i), CDDeclIndirection(*(lhs_res2.ddecl_cptr), lhs_res2.indirection_level + i));
if ((*(rhs_res2.ddecl_conversion_state_ptr)).has_been_determined_to_be_an_array(rhs_res2.indirection_level + i)) {
(*cr_shptr).do_replacement(m_state1);
} else {
m_state1.m_array2_contingent_replacement_map.insert(cr_shptr);
}
}
}
}
}
}
private:
Rewriter &Rewrite;
CState1& m_state1;
};
class MCSSSParameterPassing : public MatchFinder::MatchCallback
{
public:
MCSSSParameterPassing (Rewriter &Rewrite, CState1& state1) :
Rewrite(Rewrite), m_state1(state1) {}
virtual void run(const MatchFinder::MatchResult &MR)
{
const CallExpr* CE = MR.Nodes.getNodeAs<clang::CallExpr>("mcsssparameterpassing1");
const DeclRefExpr* DRE = MR.Nodes.getNodeAs<clang::DeclRefExpr>("mcsssparameterpassing2");
const MemberExpr* ME = MR.Nodes.getNodeAs<clang::MemberExpr>("mcsssparameterpassing3");
const clang::CStyleCastExpr* CCE = MR.Nodes.getNodeAs<clang::CStyleCastExpr>("mcsssparameterpassing4");
if ((CE != nullptr) && (DRE != nullptr))
{
auto CESR = nice_source_range(CE->getSourceRange(), Rewrite);
SourceLocation CESL = CESR.getBegin();
SourceLocation CESLE = CESR.getEnd();
ASTContext *const ASTC = MR.Context;
FullSourceLoc FCESL = ASTC->getFullLoc(CESL);
SourceManager &SM = ASTC->getSourceManager();
auto source_location_str = CESL.printToString(*MR.SourceManager);
std::string source_text;
if (CESL.isValid() && CESLE.isValid()) {
source_text = Rewrite.getRewrittenText(SourceRange(CESL, CESLE));
} else {
return;
}
if (filtered_out_by_location(MR, CESL)) {
return void();
}
if (std::string::npos != source_location_str.find("130")) {
int q = 5;
}
auto function_decl1 = CE->getDirectCallee();
auto num_args = CE->getNumArgs();
if (function_decl1) {
std::string function_name = function_decl1->getNameAsString();
auto lc_function_name = tolowerstr(function_name);
static const std::string free_str = "free";
bool ends_with_free = ((lc_function_name.size() >= free_str.size())
&& (0 == lc_function_name.compare(lc_function_name.size() - free_str.size(), free_str.size(), free_str)));
static const std::string alloc_str = "alloc";
static const std::string realloc_str = "realloc";
bool ends_with_alloc = ((lc_function_name.size() >= alloc_str.size())
&& (0 == lc_function_name.compare(lc_function_name.size() - alloc_str.size(), alloc_str.size(), alloc_str)));
bool ends_with_realloc = (ends_with_alloc && (lc_function_name.size() >= realloc_str.size())
&& (0 == lc_function_name.compare(lc_function_name.size() - realloc_str.size(), realloc_str.size(), realloc_str)));
bool begins_with__builtin_ = string_begins_with(function_name, "__builtin_");
bool is_memcpy = ("memcpy" == function_name);
bool is_memset = ("memset" == function_name);
if (ends_with_free || ends_with_alloc || ends_with_realloc || is_memcpy || is_memset || begins_with__builtin_) {
return void();
}
auto function_decls_range = function_decl1->redecls();
for (const auto& function_decl : function_decls_range) {
auto param_iter = function_decl->param_begin();
auto arg_iter = CE->arg_begin();
for (; (arg_iter != CE->arg_end()) && (param_iter != function_decl->param_end());
arg_iter++, param_iter++) {
assert((*arg_iter)->getType().getTypePtrOrNull());
auto arg_source_range = nice_source_range((*arg_iter)->getSourceRange(), Rewrite);
std::string arg_source_text;
if (arg_source_range.isValid()) {
arg_source_text = Rewrite.getRewrittenText(arg_source_range);
}
auto param_VD = (*param_iter)->getDefinition();
auto arg_EX = (*arg_iter);
if ((nullptr != param_VD) && (nullptr != arg_EX) && arg_source_range.isValid()) {
bool lhs_is_an_indirect_type = is_an_indirect_type(param_VD->getType());
bool rhs_is_an_indirect_type = is_an_indirect_type(arg_EX->getType());
assert(lhs_is_an_indirect_type == rhs_is_an_indirect_type);
auto res1 = m_state1.m_ddecl_conversion_state_map.insert(*param_VD);
auto ddcs_map_iter = res1.first;
auto& ddcs_ref = (*ddcs_map_iter).second;
bool update_declaration_flag = res1.second;
size_t lhs_indirection_level_adjustment = 0;
auto rhs_res3 = leading_addressof_operator_info_from_stmt(*arg_EX);
if (rhs_res3.without_leading_addressof_operator_expr_cptr) {
assert(rhs_res3.leading_addressof_operator_detected && rhs_res3.addressof_unary_operator_cptr);
arg_EX = rhs_res3.without_leading_addressof_operator_expr_cptr;
lhs_indirection_level_adjustment = 1;
const clang::ArraySubscriptExpr* array_subscript_expr_cptr = nullptr;
if (clang::Stmt::StmtClass::ArraySubscriptExprClass == (*(rhs_res3.without_leading_addressof_operator_expr_cptr)).getStmtClass()) {
assert(llvm::isa<const clang::ArraySubscriptExpr>(rhs_res3.without_leading_addressof_operator_expr_cptr));
array_subscript_expr_cptr = llvm::cast<const clang::ArraySubscriptExpr>(rhs_res3.without_leading_addressof_operator_expr_cptr);
}
if (array_subscript_expr_cptr) {
std::shared_ptr<CArray2ReplacementAction> cr_shptr = std::make_shared<CAssignmentTargetConstrainsAddressofArraySubscriptExprArray2ReplacementAction>(Rewrite, MR,
CDDeclIndirection(*param_VD, 0), *(rhs_res3.addressof_unary_operator_cptr), *array_subscript_expr_cptr);
if (ddcs_ref.has_been_determined_to_be_an_array(0)) {
(*cr_shptr).do_replacement(m_state1);
} else {
m_state1.m_array2_contingent_replacement_map.insert(cr_shptr);
}
}
}
auto rhs_res2 = infer_array_type_info_from_stmt(*arg_EX, "", (*this).m_state1);
if (rhs_res2.ddecl_cptr && rhs_res2.update_declaration_flag) {
update_declaration(*(rhs_res2.ddecl_cptr), Rewrite, m_state1);
}
if ((nullptr != CCE) && (rhs_res2.ddecl_conversion_state_ptr)) {
auto cce_QT = CCE->getType();
auto rhs_QT = arg_EX->getType();
if (cce_QT == rhs_QT) {
CIndirectionStateStack rhs_qtype_indirection_state_stack;
auto direct_rhs_qtype = populateQTypeIndirectionStack(rhs_qtype_indirection_state_stack, rhs_QT);
auto direct_rhs_qtype_str = direct_rhs_qtype.getAsString();
auto casted_expr_ptr = CCE->IgnoreCasts();
if ((rhs_qtype_indirection_state_stack.size() + rhs_res2.indirection_level
== (*(rhs_res2.ddecl_conversion_state_ptr)).m_indirection_state_stack.size())
&& (1 <= (*rhs_res2.ddecl_conversion_state_ptr).m_indirection_state_stack.size())
&& (nullptr != casted_expr_ptr)) {
std::string rhs_ddecl_current_direct_qtype_str = (*rhs_res2.ddecl_conversion_state_ptr).m_current_direct_qtype.getAsString();
auto casted_expr_SR = nice_source_range(casted_expr_ptr->getSourceRange(), Rewrite);
auto CCESR = nice_source_range(CCE->getSourceRange(), Rewrite);
if (CCESR.isValid() && casted_expr_SR.isValid()
&& (("void" == rhs_ddecl_current_direct_qtype_str) || ("const void" == rhs_ddecl_current_direct_qtype_str))) {
if (ConvertToSCPP) {
(*rhs_res2.ddecl_conversion_state_ptr).m_current_direct_qtype = direct_rhs_qtype;
/* This is not the proper way to modify an expression. See the function
* CConditionalOperatorReconciliation2ReplacementAction::do_replacement() for an example of
* the proper way to do it. But for now this is good enough. */
auto casted_expr_text = Rewrite.getRewrittenText(casted_expr_SR);
auto res2 = Rewrite.ReplaceText(CCESR, casted_expr_text);
static const std::string void_str = "void";
auto void_pos = (*rhs_res2.ddecl_conversion_state_ptr).m_initializer_info_str.find(void_str);
if (std::string::npos != void_pos) {
(*rhs_res2.ddecl_conversion_state_ptr).m_initializer_info_str.replace(void_pos, void_str.length(), direct_rhs_qtype_str);
}
update_declaration(*(rhs_res2.ddecl_cptr), Rewrite, m_state1);
}
} else {
if (ConvertToSCPP) {
//(*rhs_res2.ddecl_conversion_state_ptr).m_current_direct_qtype = direct_rhs_qtype;
}
}
} else {
int q = 7;
}
} else {
int q = 7;
}
}
if (ddcs_ref.m_ddecl_cptr && update_declaration_flag) {
update_declaration(*(ddcs_ref.m_ddecl_cptr), Rewrite, m_state1);
}
if (ConvertToSCPP && (rhs_res2.ddecl_conversion_state_ptr) && lhs_is_an_indirect_type) {
int max_indirection_level1 = int((*(rhs_res2.ddecl_conversion_state_ptr)).m_indirection_state_stack.size()) - int(rhs_res2.indirection_level);
int int_max_indirection_level = std::min(int(ddcs_ref.m_indirection_state_stack.size()) - int(lhs_indirection_level_adjustment), max_indirection_level1);
size_t szt_max_indirection_level = 0;
if (0 <= int_max_indirection_level) {
szt_max_indirection_level = size_t(int_max_indirection_level);
}
for (size_t i = 0; (i < szt_max_indirection_level); i += 1) {
{
/* Here we're establishing and "enforcing" the constraint that the rhs value must
* be of an (array) type that can be assigned to the lhs. */
std::shared_ptr<CArray2ReplacementAction> cr_shptr;
if (1 > (i + lhs_indirection_level_adjustment)) {
cr_shptr = std::make_shared<CAssignmentTargetConstrainsSourceArray2ReplacementAction>(Rewrite, MR,
CDDeclIndirection(*param_VD, i + lhs_indirection_level_adjustment), CDDeclIndirection(*(rhs_res2.ddecl_cptr), rhs_res2.indirection_level + i));
} else {
/* Levels of indirection beyond the first one must be of the same type,
* not just of "compatible" types. */
cr_shptr = std::make_shared<CSameTypeArray2ReplacementAction>(Rewrite, MR,
CDDeclIndirection(*param_VD, i + lhs_indirection_level_adjustment), CDDeclIndirection(*(rhs_res2.ddecl_cptr), rhs_res2.indirection_level + i));
}
if (ddcs_ref.has_been_determined_to_be_an_array(i + lhs_indirection_level_adjustment)) {
(*cr_shptr).do_replacement(m_state1);
if (!(ddcs_ref.has_been_determined_to_be_a_dynamic_array(i + lhs_indirection_level_adjustment))) {
m_state1.m_dynamic_array2_contingent_replacement_map.insert(cr_shptr);
}
} else {
m_state1.m_array2_contingent_replacement_map.insert(cr_shptr);
m_state1.m_dynamic_array2_contingent_replacement_map.insert(cr_shptr);
}
}
{
/* Here we're establishing the constraint in the opposite direction as well. */
std::shared_ptr<CArray2ReplacementAction> cr_shptr;
if (1 > (i + lhs_indirection_level_adjustment)) {
cr_shptr = std::make_shared<CAssignmentSourceConstrainsTargetArray2ReplacementAction>(Rewrite, MR,
CDDeclIndirection(*(rhs_res2.ddecl_cptr), rhs_res2.indirection_level + i), CDDeclIndirection(*param_VD, i + lhs_indirection_level_adjustment));
} else {
/* Levels of indirection beyond the first one must be of the same type,
* not just of "compatible" types. */
cr_shptr = std::make_shared<CSameTypeArray2ReplacementAction>(Rewrite, MR,
CDDeclIndirection(*(rhs_res2.ddecl_cptr), rhs_res2.indirection_level + i), CDDeclIndirection(*param_VD, i + lhs_indirection_level_adjustment));
}
if ((*(rhs_res2.ddecl_conversion_state_ptr)).has_been_determined_to_be_an_array(rhs_res2.indirection_level + i)) {
(*cr_shptr).do_replacement(m_state1);
if (!((*(rhs_res2.ddecl_conversion_state_ptr)).has_been_determined_to_be_a_dynamic_array(rhs_res2.indirection_level + i))) {
m_state1.m_dynamic_array2_contingent_replacement_map.insert(cr_shptr);
}
} else {
m_state1.m_array2_contingent_replacement_map.insert(cr_shptr);
m_state1.m_dynamic_array2_contingent_replacement_map.insert(cr_shptr);
}
}
}
}
} else {
int q = 5;
}
int q = 5;
}
}
}
}
}
private:
Rewriter &Rewrite;
CState1& m_state1;
};
class MCSSSReturnValue : public MatchFinder::MatchCallback
{
public:
MCSSSReturnValue (Rewriter &Rewrite, CState1& state1) :
Rewrite(Rewrite), m_state1(state1) {}
virtual void run(const MatchFinder::MatchResult &MR)
{
const clang::FunctionDecl* FND = MR.Nodes.getNodeAs<clang::FunctionDecl>("mcsssreturnvalue1");
const clang::ReturnStmt* RS = MR.Nodes.getNodeAs<clang::ReturnStmt>("mcsssreturnvalue2");
const DeclRefExpr* DRE = MR.Nodes.getNodeAs<clang::DeclRefExpr>("mcsssreturnvalue3");
if ((FND != nullptr) && (DRE != nullptr) && (RS != nullptr))
{
auto FNDSR = nice_source_range(FND->getSourceRange(), Rewrite);
SourceLocation FNDSL = FNDSR.getBegin();
SourceLocation FNDSLE = FNDSR.getEnd();
ASTContext *const ASTC = MR.Context;
FullSourceLoc FFNDSL = ASTC->getFullLoc(FNDSL);
SourceManager &SM = ASTC->getSourceManager();
auto source_location_str = FNDSL.printToString(*MR.SourceManager);
std::string source_text;
if (FNDSL.isValid() && FNDSLE.isValid()) {
source_text = Rewrite.getRewrittenText(SourceRange(FNDSL, FNDSLE));
} else {
return;
}
if (filtered_out_by_location(MR, FNDSL)) {
return void();
}
auto function_decl1 = FND;
auto num_params = FND->getNumParams();
if (function_decl1) {
std::string function_name = function_decl1->getNameAsString();
auto lc_function_name = tolowerstr(function_name);
static const std::string free_str = "free";
bool ends_with_free = ((lc_function_name.size() >= free_str.size())
&& (0 == lc_function_name.compare(lc_function_name.size() - free_str.size(), free_str.size(), free_str)));
static const std::string alloc_str = "alloc";
static const std::string realloc_str = "realloc";
bool ends_with_alloc = ((lc_function_name.size() >= alloc_str.size())
&& (0 == lc_function_name.compare(lc_function_name.size() - alloc_str.size(), alloc_str.size(), alloc_str)));
bool ends_with_realloc = (ends_with_alloc && (lc_function_name.size() >= realloc_str.size())
&& (0 == lc_function_name.compare(lc_function_name.size() - realloc_str.size(), realloc_str.size(), realloc_str)));
bool begins_with__builtin_ = string_begins_with(function_name, "__builtin_");
if (ends_with_free || ends_with_alloc || ends_with_realloc || begins_with__builtin_) {
return void();
}
auto rhs_res2 = infer_array_type_info_from_stmt(*(RS->getRetValue()), "", (*this).m_state1);
bool rhs_is_an_indirect_type = is_an_indirect_type(RS->getRetValue()->getType());
if (rhs_res2.ddecl_cptr && rhs_res2.update_declaration_flag) {
update_declaration(*(rhs_res2.ddecl_cptr), Rewrite, m_state1);
}
auto function_decls_range = function_decl1->redecls();
for (const auto& function_decl : function_decls_range) {
auto res1 = m_state1.m_ddecl_conversion_state_map.insert(*function_decl);
auto ddcs_map_iter = res1.first;
auto& ddcs_ref = (*ddcs_map_iter).second;
bool update_declaration_flag = res1.second;
bool lhs_is_an_indirect_type = is_an_indirect_type(function_decl->getReturnType());
assert(lhs_is_an_indirect_type == rhs_is_an_indirect_type);
if (ddcs_ref.m_ddecl_cptr && update_declaration_flag) {
update_declaration(*(ddcs_ref.m_ddecl_cptr), Rewrite, m_state1);
}
if (ConvertToSCPP && (rhs_res2.ddecl_conversion_state_ptr) && lhs_is_an_indirect_type) {
for (size_t i = 0; (rhs_res2.indirection_level + i < ddcs_ref.m_indirection_state_stack.size())
&& (rhs_res2.indirection_level + i < (*(rhs_res2.ddecl_conversion_state_ptr)).m_indirection_state_stack.size()); i += 1) {
{
/* Here we're establishing and "enforcing" the constraint that the rhs value must
* be of an (array) type that can be assigned to the lhs. */
auto cr_shptr = std::make_shared<CAssignmentTargetConstrainsSourceArray2ReplacementAction>(Rewrite, MR, CDDeclIndirection(*function_decl, 0 + i), CDDeclIndirection(*(rhs_res2.ddecl_cptr), rhs_res2.indirection_level + i));
if (ddcs_ref.has_been_determined_to_be_an_array(0 + i)) {
(*cr_shptr).do_replacement(m_state1);
} else {
m_state1.m_array2_contingent_replacement_map.insert(cr_shptr);
}
}
{
/* Here we're establishing the constraint in the opposite direction as well. */
auto cr_shptr = std::make_shared<CAssignmentSourceConstrainsTargetArray2ReplacementAction>(Rewrite, MR, CDDeclIndirection(*(rhs_res2.ddecl_cptr), rhs_res2.indirection_level + i), CDDeclIndirection(*function_decl, 0 + i));
if ((*(rhs_res2.ddecl_conversion_state_ptr)).has_been_determined_to_be_an_array(rhs_res2.indirection_level + i)) {
(*cr_shptr).do_replacement(m_state1);
} else {
m_state1.m_array2_contingent_replacement_map.insert(cr_shptr);
}
}
}
}
}
}
}
}
private:
Rewriter &Rewrite;
CState1& m_state1;
};
/**********************************************************************************************************************/
class MyASTConsumer : public ASTConsumer {
public:
MyASTConsumer(Rewriter &R) : HandlerForSSSNativePointer(R), HandlerForSSSArrayToPointerDecay(R, m_state1),
HandlerForSSSVarDecl2(R, m_state1), HandlerForSSSPointerArithmetic2(R, m_state1), HandlerForSSSMalloc2(R, m_state1),
HandlerForSSSMallocInitializer2(R, m_state1), HandlerForSSSFree2(R, m_state1), HandlerForSSSSetToNull2(R, m_state1),
HandlerForSSSMemset(R, m_state1), HandlerForSSSMemcpy(R, m_state1), HandlerForSSSConditionalInitializer(R, m_state1),
HandlerForSSSAssignment(R, m_state1), HandlerForSSSParameterPassing(R, m_state1), HandlerForSSSReturnValue(R, m_state1)
{
Matcher.addMatcher(varDecl(hasType(pointerType())).bind("mcsssnativepointer"), &HandlerForSSSNativePointer);
Matcher.addMatcher(castExpr(allOf(hasCastKind(CK_ArrayToPointerDecay), unless(hasParent(arraySubscriptExpr())))).bind("mcsssarraytopointerdecay"), &HandlerForSSSArrayToPointerDecay);
Matcher.addMatcher(clang::ast_matchers::declaratorDecl().bind("mcsssvardecl"), &HandlerForSSSVarDecl2);
Matcher.addMatcher(expr(allOf(
hasParent(expr(anyOf(
unaryOperator(hasOperatorName("++")), unaryOperator(hasOperatorName("--")),
binaryOperator(hasOperatorName("+=")), binaryOperator(hasOperatorName("-=")),
castExpr(hasParent(expr(anyOf(
binaryOperator(hasOperatorName("+")), binaryOperator(hasOperatorName("+=")),
binaryOperator(hasOperatorName("-")), binaryOperator(hasOperatorName("-=")),
binaryOperator(hasOperatorName("<=")), binaryOperator(hasOperatorName("<")),
binaryOperator(hasOperatorName(">=")), binaryOperator(hasOperatorName(">")),
arraySubscriptExpr()/*, clang::ast_matchers::castExpr(hasParent(arraySubscriptExpr()))*/
))))))),
hasType(pointerType()),
anyOf(
memberExpr(expr(hasDescendant(declRefExpr().bind("mcssspointerarithmetic")))).bind("mcssspointerarithmetic2"),
declRefExpr().bind("mcssspointerarithmetic"),
hasDescendant(memberExpr(expr(hasDescendant(declRefExpr().bind("mcssspointerarithmetic")))).bind("mcssspointerarithmetic2")),
hasDescendant(declRefExpr().bind("mcssspointerarithmetic"))
)
)).bind("mcssspointerarithmetic3"), &HandlerForSSSPointerArithmetic2);
Matcher.addMatcher(binaryOperator(allOf(
hasOperatorName("="),
hasRHS(
anyOf(
cStyleCastExpr(has(ignoringParenCasts(callExpr().bind("mcsssmalloc2")))),
ignoringParenCasts(callExpr().bind("mcsssmalloc2"))
)
),
hasLHS(ignoringParenCasts(anyOf(
memberExpr(expr(hasDescendant(declRefExpr().bind("mcsssmalloc3")))).bind("mcsssmalloc4"),
declRefExpr().bind("mcsssmalloc3"),
hasDescendant(memberExpr(expr(hasDescendant(declRefExpr().bind("mcsssmalloc3")))).bind("mcsssmalloc4")),
hasDescendant(declRefExpr().bind("mcsssmalloc3"))
))),
hasLHS(expr(hasType(pointerType())))
)).bind("mcsssmalloc1"), &HandlerForSSSMalloc2);
Matcher.addMatcher(declStmt(hasDescendant(
varDecl(hasInitializer(ignoringParenCasts(
callExpr().bind("mcsssmallocinitializer2")
))).bind("mcsssmallocinitializer3")
)).bind("mcsssmallocinitializer1"), &HandlerForSSSMallocInitializer2);
Matcher.addMatcher(
callExpr(allOf(
hasAnyArgument(ignoringParenCasts(
expr(anyOf(
memberExpr(expr(hasDescendant(declRefExpr().bind("mcsssfree2")))).bind("mcsssfree3"),
declRefExpr().bind("mcsssfree2"),
hasDescendant(memberExpr(expr(hasDescendant(declRefExpr().bind("mcsssfree2")))).bind("mcsssfree3")),
hasDescendant(declRefExpr().bind("mcsssfree2"))
)))),
argumentCountIs(1),
hasAnyArgument(hasType(pointerType()))
)).bind("mcsssfree1"), &HandlerForSSSFree2);
Matcher.addMatcher(binaryOperator(allOf(
hasOperatorName("="),
hasLHS(anyOf(
ignoringParenCasts(declRefExpr().bind("mcssssettonull3")),
ignoringParenCasts(expr(hasDescendant(declRefExpr().bind("mcssssettonull3"))))
)),
hasLHS(expr(hasType(pointerType())))
)).bind("mcssssettonull1"), &HandlerForSSSSetToNull2);
Matcher.addMatcher(
callExpr(allOf(
hasAnyArgument(
ignoringParenCasts(expr(anyOf(
memberExpr(expr(hasDescendant(declRefExpr().bind("mcsssmemset2")))).bind("mcsssmemset3"),
declRefExpr().bind("mcsssmemset2"),
hasDescendant(memberExpr(expr(hasDescendant(declRefExpr().bind("mcsssmemset2")))).bind("mcsssmemset3")),
hasDescendant(declRefExpr().bind("mcsssmemset2"))
)))),
argumentCountIs(3),
hasAnyArgument(hasType(pointerType()))
)).bind("mcsssmemset1"), &HandlerForSSSMemset);
Matcher.addMatcher(
callExpr(allOf(
hasAnyArgument(
ignoringParenCasts(expr(anyOf(
memberExpr(expr(hasDescendant(declRefExpr().bind("mcsssmemcpy2")))).bind("mcsssmemcpy3"),
declRefExpr().bind("mcsssmemcpy2"),
hasDescendant(memberExpr(expr(hasDescendant(declRefExpr().bind("mcsssmemcpy2")))).bind("mcsssmemcpy3")),
hasDescendant(declRefExpr().bind("mcsssmemcpy2"))
)))),
argumentCountIs(3),
hasAnyArgument(hasType(pointerType()))
)).bind("mcsssmemcpy1"), &HandlerForSSSMemcpy);
Matcher.addMatcher(declStmt(hasDescendant(
varDecl(hasInitializer(ignoringParenCasts(
anyOf(
conditionalOperator(has(declRefExpr())).bind("mcsssconditionalinitializer2"),
conditionalOperator(hasDescendant(declRefExpr())).bind("mcsssconditionalinitializer2")
)
))).bind("mcsssconditionalinitializer3")
)).bind("mcsssconditionalinitializer1"), &HandlerForSSSConditionalInitializer);
Matcher.addMatcher(binaryOperator(allOf(
hasOperatorName("="),
hasLHS(hasDescendant(declRefExpr().bind("mcsssassignment2"))),
hasRHS(anyOf(
cStyleCastExpr(hasDescendant(declRefExpr().bind("mcsssassignment3"))).bind("mcsssassignment4"),
expr(hasDescendant(declRefExpr().bind("mcsssassignment3")))
))
)).bind("mcsssassignment1"), &HandlerForSSSAssignment);
Matcher.addMatcher(
callExpr(allOf(
hasAnyArgument(anyOf(
cStyleCastExpr(anyOf(
memberExpr(expr(hasDescendant(declRefExpr().bind("mcsssparameterpassing2")))).bind("mcsssparameterpassing3"),
declRefExpr().bind("mcsssparameterpassing2"),
hasDescendant(memberExpr(expr(hasDescendant(declRefExpr().bind("mcsssparameterpassing2")))).bind("mcsssparameterpassing3")),
hasDescendant(declRefExpr().bind("mcsssparameterpassing2"))
)).bind("mcsssparameterpassing4"),
expr(anyOf(
memberExpr(expr(hasDescendant(declRefExpr().bind("mcsssparameterpassing2")))).bind("mcsssparameterpassing3"),
declRefExpr().bind("mcsssparameterpassing2"),
hasDescendant(memberExpr(expr(hasDescendant(declRefExpr().bind("mcsssparameterpassing2")))).bind("mcsssparameterpassing3")),
hasDescendant(declRefExpr().bind("mcsssparameterpassing2"))
))
)),
hasAnyArgument(hasType(pointerType()))
)).bind("mcsssparameterpassing1"), &HandlerForSSSParameterPassing);
Matcher.addMatcher(returnStmt(allOf(
hasAncestor(functionDecl().bind("mcsssreturnvalue1")),
hasDescendant(declRefExpr().bind("mcsssreturnvalue3"))
)).bind("mcsssreturnvalue2"), &HandlerForSSSReturnValue);
}
void HandleTranslationUnit(ASTContext &Context) override
{
Matcher.matchAST(Context);
}
private:
CState1 m_state1;
MCSSSNativePointer HandlerForSSSNativePointer;
MCSSSArrayToPointerDecay HandlerForSSSArrayToPointerDecay;
MCSSSVarDecl2 HandlerForSSSVarDecl2;
MCSSSPointerArithmetic2 HandlerForSSSPointerArithmetic2;
MCSSSMalloc2 HandlerForSSSMalloc2;
MCSSSMallocInitializer2 HandlerForSSSMallocInitializer2;
MCSSSFree2 HandlerForSSSFree2;
MCSSSSetToNull2 HandlerForSSSSetToNull2;
MCSSSMemset HandlerForSSSMemset;
MCSSSMemcpy HandlerForSSSMemcpy;
MCSSSConditionalInitializer HandlerForSSSConditionalInitializer;
MCSSSAssignment HandlerForSSSAssignment;
MCSSSParameterPassing HandlerForSSSParameterPassing;
MCSSSReturnValue HandlerForSSSReturnValue;
MatchFinder Matcher;
};
/**********************************************************************************************************************/
class MyFrontendAction : public ASTFrontendAction
{
public:
MyFrontendAction() {}
~MyFrontendAction() {
if (ConvertToSCPP) {
auto res = overwriteChangedFiles();
int q = 5;
}
}
void EndSourceFileAction() override {
TheRewriter.getEditBuffer(TheRewriter.getSourceMgr().getMainFileID()).write(llvm::outs());
}
std::unique_ptr<ASTConsumer> CreateASTConsumer(CompilerInstance &CI, StringRef file) override {
TheRewriter.setSourceMgr(CI.getSourceManager(), CI.getLangOpts());
return llvm::make_unique<MyASTConsumer>(TheRewriter);
}
bool overwriteChangedFiles() {
return TheRewriter.overwriteChangedFiles();
}
private:
Rewriter TheRewriter;
};
/**********************************************************************************************************************/
/*Main*/
int main(int argc, const char **argv)
{
CommonOptionsParser op(argc, argv, MatcherSampleCategory);
ClangTool Tool(op.getCompilations(), op.getSourcePathList());
return Tool.run(newFrontendActionFactory<MyFrontendAction>().get());
}
/*last line intentionally left blank*/