#!/usr/bin/python3
# _*_ coding=utf-8 _*_
# original source-https://medium.com/@huangkh19951228/predicting-cryptocurrency-price-with-tensorflow-and-keras-e1674b0dc58a
import argparse
import code
import readline
import signal
import sys
import json
import numpy as np
import os
import pandas as pd
import urllib3
import requests
from pathlib import Path
from sklearn.preprocessing import MinMaxScaler
import h5py
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten, Reshape
from keras.layers import Conv1D, MaxPooling1D, LeakyReLU, PReLU
from keras.layers import LSTM
from keras.layers import GRU, CuDNNGRU
from keras.utils import np_utils
from keras.callbacks import CSVLogger, ModelCheckpoint
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
from keras import applications
from keras.models import Model
from scipy.ndimage import imread
import random
from keras import backend as K
import keras
from keras import optimizers
import matplotlib.pyplot as plt
def SigHandler_SIGINT(signum, frame):
print()
sys.exit(0)
class Argparser(object):
def __init__(self):
parser = argparse.ArgumentParser()
parser.add_argument("--string", type=str, help="string")
parser.add_argument(
"--bool", action="store_true", help="bool", default=False
)
parser.add_argument(
"--dbg", action="store_true", help="debug", default=False
)
self.args = parser.parse_args()
class PastSampler(object):
def __init__(self, N, K, sliding_window=True):
self.N = N
self.K = K
self.sliding_window = sliding_window
def transform(self, A):
M = self.N + self.K
if self.sliding_window:
I = np.arange(M) + np.arange(A.shape[0] - M + 1).reshape(-1, 1)
else:
if A.shape[0] % M == 0:
I = np.arange(M) + np.arange(0, A.shape[0], M).reshape(-1, 1)
else:
I = np.arange(M) + np.arange(0, A.shape[0] - M, M).reshape(
-1, 1
)
B = A[I].reshape(-1, M * A.shape[1], A.shape[2])
ci = self.N * A.shape[1]
return B[:, :ci], B[:, ci:]
def getData(symbol_str):
data_file = Path("./cnn/" + symbol_str + ".csv")
original_columns = ["close", "date", "high", "low", "open"]
new_columns = ["Close", "Timestamp", "High", "Low", "Open"]
columns = ["Close"]
url = (
"https://poloniex.com/public?command=returnChartData¤cyPair=USDT_"
+ symbol_str
+ "&start=1356998100&end=9999999999&period=300"
)
r = requests.get(url)
d = json.loads(r.content.decode("utf-8"))
df = pd.DataFrame(d)
df = df.loc[:, original_columns]
df.columns = new_columns
df.to_csv("./cnn/" + symbol_str + ".csv", index=None)
df = pd.read_csv(data_file)
time_stamps = df["Timestamp"]
df = df.loc[:, columns]
original_df = pd.read_csv(data_file).loc[:, columns]
return df, original_df, time_stamps
def Scaler(df, original_df, time_stamps, symbol_str):
file_name = "./cnn/" + symbol_str + "_close.h5"
scaler = MinMaxScaler()
columns = ["Close"]
for c in columns:
df[c] = scaler.fit_transform(df[c].values.reshape(-1, 1))
A = np.array(df)[:, None, :]
original_A = np.array(original_df)[:, None, :]
time_stamps = np.array(time_stamps)[:, None, None]
NPS, NFS = 256, 16
ps = PastSampler(NPS, NFS, sliding_window=False)
B, Y = ps.transform(A)
input_times, output_times = ps.transform(time_stamps)
original_B, original_Y = ps.transform(original_A)
with h5py.File(file_name, "w") as f:
f.create_dataset("inputs", data=B)
f.create_dataset("outputs", data=Y)
f.create_dataset("input_times", data=input_times)
f.create_dataset("output_times", data=output_times)
f.create_dataset("original_datas", data=np.array(original_df))
f.create_dataset("original_inputs", data=original_B)
f.create_dataset("original_outputs", data=original_Y)
def cnn_type_1(symbol_str):
df, original_df, time_stamps = getData(symbol_str)
Scaler(df, original_df, time_stamps, symbol_str)
# run on gpu
"""
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
"""
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
set_session(tf.Session(config=config))
with h5py.File("".join("./cnn/" + symbol_str + "_close.h5"), "r") as hf:
datas = hf["inputs"].value
labels = hf["outputs"].value
output_file_name = "cnn/" + symbol_str + "_CNN_2_relu"
step_size = datas.shape[1]
batch_size = 8
nb_features = datas.shape[2]
epochs = 100
# split training validation
training_size = int(0.8 * datas.shape[0])
training_datas = datas[:training_size, :]
training_labels = labels[:training_size, :]
validation_datas = datas[training_size:, :]
validation_labels = labels[training_size:, :]
model = Sequential()
# 2 Layers
model.add(
Conv1D(
activation="relu",
input_shape=(step_size, nb_features),
strides=3,
filters=8,
kernel_size=20,
)
)
model.add(Dropout(0.5))
model.add(Conv1D(strides=4, filters=nb_features, kernel_size=16))
"""
# 3 Layers
model.add(Conv1D(activation='relu', input_shape=(step_size, nb_features), strides=3, filters=8, kernel_size=8))
#model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Conv1D(activation='relu', strides=2, filters=8, kernel_size=8))
#model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Conv1D( strides=2, filters=nb_features, kernel_size=8))
# 4 layers
model.add(Conv1D(activation='relu', input_shape=(step_size, nb_features), strides=2, filters=8, kernel_size=2))
#model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Conv1D(activation='relu', strides=2, filters=8, kernel_size=2))
#model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Conv1D(activation='relu', strides=2, filters=8, kernel_size=2))
#model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Conv1D( strides=2, filters=nb_features, kernel_size=2))
"""
model.compile(loss="mse", optimizer="adam")
model.fit(
training_datas,
training_labels,
verbose=1,
batch_size=batch_size,
validation_data=(validation_datas, validation_labels),
epochs=epochs,
callbacks=[
CSVLogger(output_file_name + ".csv", append=True),
ModelCheckpoint(
output_file_name + "-{epoch:02d}-{val_loss:.5f}.hdf5",
monitor="val_loss",
verbose=1,
mode="min",
),
],
)
def lstm_type_cnn_1(symbol_str, kind):
df, original_df, time_stamps = getData(symbol_str)
Scaler(df, original_df, time_stamps, symbol_str)
"""
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
"""
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
set_session(tf.Session(config=config))
with h5py.File("".join("./cnn/" + symbol_str + "_close.h5"), "r") as hf:
datas = hf["inputs"].value
labels = hf["outputs"].value
step_size = datas.shape[1]
units = 50
second_units = 30
batch_size = 8
nb_features = datas.shape[2]
epochs = 100
output_size = 16
output_file_name = "cnn/" + symbol_str + "_CNN_LSTM_2_relu"
# split training validation
training_size = int(0.8 * datas.shape[0])
training_datas = datas[:training_size, :]
training_labels = labels[:training_size, :, 0]
validation_datas = datas[training_size:, :]
validation_labels = labels[training_size:, :, 0]
# build model
model = Sequential()
if kind == "GRU":
model.add(
GRU(
units=units,
activation="tanh",
input_shape=(step_size, nb_features),
return_sequences=False,
)
)
elif kind == "LSTM":
model.add(
LSTM(
units=units,
activation="tanh",
input_shape=(step_size, nb_features),
return_sequences=False,
)
)
model.add(Dropout(0.8))
model.add(Dense(output_size))
model.add(LeakyReLU())
model.compile(loss="mse", optimizer="adam")
model.fit(
training_datas,
training_labels,
batch_size=batch_size,
validation_data=(validation_datas, validation_labels),
epochs=epochs,
callbacks=[
CSVLogger(output_file_name + ".csv", append=True),
ModelCheckpoint(
output_file_name + "-{epoch:02d}-{val_loss:.5f}.hdf5",
monitor="val_loss",
verbose=1,
mode="min",
),
],
)
def load_cnn_type_1(symbol_str, vis_year, vis_month):
df, original_df, time_stamps = getData(symbol_str)
Scaler(df, original_df, time_stamps, symbol_str)
"""
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
"""
with h5py.File("".join("./cnn/" + symbol_str + "_close.h5"), "r") as hf:
datas = hf["inputs"].value
labels = hf["outputs"].value
input_times = hf["input_times"].value
output_times = hf["output_times"].value
original_inputs = hf["original_inputs"].value
original_outputs = hf["original_outputs"].value
original_datas = hf["original_datas"].value
scaler = MinMaxScaler()
# split training validation
training_size = int(0.8 * datas.shape[0])
training_datas = datas[:training_size, :, :]
training_labels = labels[:training_size, :, :]
validation_datas = datas[training_size:, :, :]
validation_labels = labels[training_size:, :, :]
validation_original_outputs = original_outputs[training_size:, :, :]
validation_original_inputs = original_inputs[training_size:, :, :]
validation_input_times = input_times[training_size:, :, :]
validation_output_times = output_times[training_size:, :, :]
ground_true = np.append(
validation_original_inputs, validation_original_outputs, axis=1
)
ground_true_times = np.append(
validation_input_times, validation_output_times, axis=1
)
step_size = datas.shape[1]
batch_size = 8
nb_features = datas.shape[2]
model = Sequential()
# 2 layers
model.add(
Conv1D(
activation="relu",
input_shape=(step_size, nb_features),
strides=3,
filters=8,
kernel_size=20,
)
)
# model.add(LeakyReLU())
model.add(Dropout(0.25))
model.add(Conv1D(strides=4, filters=nb_features, kernel_size=16))
model.load_weights("cnn/" + symbol_str + "_CNN_2_relu-76-0.00036.hdf5")
model.compile(loss="mse", optimizer="adam")
predicted = model.predict(validation_datas)
predicted_inverted = []
for i in range(original_datas.shape[1]):
scaler.fit(original_datas[:, i].reshape(-1, 1))
predicted_inverted.append(scaler.inverse_transform(predicted[:, :, i]))
print(np.array(predicted_inverted).shape)
# get only the close data
ground_true = ground_true[:, :, 0].reshape(-1)
ground_true_times = ground_true_times.reshape(-1)
ground_true_times = pd.to_datetime(ground_true_times, unit="s")
# since we are appending in the first dimension
predicted_inverted = np.array(predicted_inverted)[0, :, :].reshape(-1)
print(np.array(predicted_inverted).shape)
validation_output_times = pd.to_datetime(
validation_output_times.reshape(-1), unit="s"
)
ground_true_df = pd.DataFrame()
ground_true_df["times"] = ground_true_times
ground_true_df["value"] = ground_true
prediction_df = pd.DataFrame()
prediction_df["times"] = validation_output_times
prediction_df["value"] = predicted_inverted
prediction_df = prediction_df.loc[
(prediction_df["times"].dt.year == vis_year)
& (prediction_df["times"].dt.month > vis_month),
:,
]
ground_true_df = ground_true_df.loc[
(ground_true_df["times"].dt.year == vis_year)
& (ground_true_df["times"].dt.month > vis_month),
:,
]
plt.figure(figsize=(20, 10))
plt.plot(ground_true_df.times, ground_true_df.value, label="Actual")
plt.plot(prediction_df.times, prediction_df.value, "ro", label="Predicted")
plt.legend(loc="upper left")
plt.show()
# write code here
def premain(argparser):
signal.signal(signal.SIGINT, SigHandler_SIGINT)
# here
# cnn_type_1("ETH")
# lstm_type_cnn_1("ETH", "GRU")
load_cnn_type_1("ETH", 2018, 4)
def main():
argparser = Argparser()
if argparser.args.dbg:
try:
premain(argparser)
except Exception as e:
print(e.__doc__)
if e.message:
print(e.message)
variables = globals().copy()
variables.update(locals())
shell = code.InteractiveConsole(variables)
shell.interact(banner="DEBUG REPL")
else:
premain(argparser)
if __name__ == "__main__":
main()