aboutsummaryrefslogblamecommitdiffstats
path: root/cnn.py
blob: 8e8eb987781cf0e7a12029734443a0cb80c9ca93 (plain) (tree)
1
2
3
                  
                      
                                                                                                                            













                                              








                                                                     























                                                                                      
                                 








                                                                                
                                                    


                                                               













































































































































                                                                                                                                                                                                                                                                                                                                 




                                                   

                          

















                                                      
#!/usr/bin/python3
# _*_ coding=utf-8 _*_
# original source-https://medium.com/@huangkh19951228/predicting-cryptocurrency-price-with-tensorflow-and-keras-e1674b0dc58a

import argparse
import code
import readline
import signal
import sys
import json
import numpy as np
import os
import pandas as pd
import urllib3
import requests
from pathlib import Path
from sklearn.preprocessing import MinMaxScaler
import h5py
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten, Reshape
from keras.layers import Conv1D, MaxPooling1D, LeakyReLU, PReLU
from keras.layers import LSTM
from keras.utils import np_utils
from keras.callbacks import CSVLogger, ModelCheckpoint
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session

def SigHandler_SIGINT(signum, frame):
    print()
    sys.exit(0)

class Argparser(object):
    def __init__(self):
        parser = argparse.ArgumentParser()
        parser.add_argument("--string", type=str, help="string")
        parser.add_argument("--bool", action="store_true", help="bool", default=False)
        parser.add_argument("--dbg", action="store_true", help="debug", default=False)
        self.args = parser.parse_args()

class PastSampler(object):
    def __init__(self, N, K, sliding_window=True):
        self.N = N
        self.K = K
        self.sliding_window = sliding_window

    def transform(self, A):
        M = self.N + self.K
        if self.sliding_window:
            I = np.arange(M) + np.arange(A.shape[0] - M + 1).reshape(-1,1)
        else:
            if A.shape[0]%M == 0:
                I = np.arange(M) + np.arange(0, A.shape[0], M).reshape(-1,1)
            else:
                I = np.arange(M) + np.arange(0, A.shape[0] - M, M).reshape(-1,1)

        B = A[I].reshape(-1, M*A.shape[1], A.shape[2])
        ci = self.N*A.shape[1]
        return B[:, :ci], B[:, ci:]

def getData(symbol_str):
    data_file = Path("./cnn/" + symbol_str + ".csv")
    original_columns =["close", "date", "high", "low", "open"]
    new_columns = ["Close", "Timestamp", "High", "Low", "Open"]
    columns = ["Close"]
    url = "https://poloniex.com/public?command=returnChartData&currencyPair=USDT_" + symbol_str + "&start=1356998100&end=9999999999&period=300"
    r = requests.get(url)
    d = json.loads(r.content.decode("utf-8"))
    df = pd.DataFrame(d)

    df = df.loc[:, original_columns]
    df.columns = new_columns
    df.to_csv("./cnn/" + symbol_str + ".csv", index=None)
    df = pd.read_csv(data_file)
    time_stamps = df["Timestamp"]
    df = df.loc[:, columns]
    original_df = pd.read_csv(data_file).loc[:, columns]
    return df, original_df, time_stamps

def Scaler(df, original_df, time_stamps, symbol_str):
    file_name="./cnn/" + symbol_str + "_close.h5"
    scaler = MinMaxScaler()
    columns= ["Close"]
    for c in columns:
        df[c] = scaler.fit_transform(df[c].values.reshape(-1,1))
    A = np.array(df)[:,None,:]
    original_A = np.array(original_df)[:,None,:]
    time_stamps = np.array(time_stamps)[:,None,None]
    NPS, NFS = 256, 16
    ps = PastSampler(NPS, NFS, sliding_window=False)
    B, Y = ps.transform(A)
    input_times, output_times = ps.transform(time_stamps)
    original_B, original_Y = ps.transform(original_A)

    with h5py.File(file_name, "w") as f:
        f.create_dataset("inputs", data=B)
        f.create_dataset("outputs", data=Y)
        f.create_dataset("input_times", data=input_times)
        f.create_dataset("output_times", data=output_times)
        f.create_dataset("original_datas", data=np.array(original_df))
        f.create_dataset("original_inputs", data=original_B)
        f.create_dataset("original_outputs", data=original_Y)

def cnn_type_1(symbol_str):
    df, original_df, time_stamps = getData(symbol_str)
    Scaler(df, original_df, time_stamps, symbol_str)
    # run on gpu
    '''
    os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
    os.environ["CUDA_VISIBLE_DEVICES"] = "1"
    os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
    '''

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    set_session(tf.Session(config=config))

    with h5py.File("".join("./cnn/" + symbol_str + "_close.h5"), "r") as hf:
        datas = hf["inputs"].value
        labels = hf["outputs"].value

    output_file_name = "cnn/" + symbol_str + "_CNN_2_relu"
    step_size = datas.shape[1]
    batch_size = 8
    nb_features = datas.shape[2]

    epochs = 100

    #split training validation
    training_size = int(0.8* datas.shape[0])
    training_datas = datas[:training_size,:]
    training_labels = labels[:training_size,:]
    validation_datas = datas[training_size:,:]
    validation_labels = labels[training_size:,:]

    model = Sequential()

    # 2 Layers
    model.add(Conv1D(activation='relu', input_shape=(step_size, nb_features), strides=3, filters=8, kernel_size=20))
    model.add(Dropout(0.5))
    model.add(Conv1D( strides=4, filters=nb_features, kernel_size=16))

    '''
    # 3 Layers
    model.add(Conv1D(activation='relu', input_shape=(step_size, nb_features), strides=3, filters=8, kernel_size=8))
    #model.add(LeakyReLU())
    model.add(Dropout(0.5))
    model.add(Conv1D(activation='relu', strides=2, filters=8, kernel_size=8))
    #model.add(LeakyReLU())
    model.add(Dropout(0.5))
    model.add(Conv1D( strides=2, filters=nb_features, kernel_size=8))
    # 4 layers
    model.add(Conv1D(activation='relu', input_shape=(step_size, nb_features), strides=2, filters=8, kernel_size=2))
    #model.add(LeakyReLU())
    model.add(Dropout(0.5))
    model.add(Conv1D(activation='relu', strides=2, filters=8, kernel_size=2))
    #model.add(LeakyReLU())
    model.add(Dropout(0.5))
    model.add(Conv1D(activation='relu', strides=2, filters=8, kernel_size=2))
    #model.add(LeakyReLU())
    model.add(Dropout(0.5))
    model.add(Conv1D( strides=2, filters=nb_features, kernel_size=2))
    '''

    model.compile(loss='mse', optimizer='adam')
    model.fit(training_datas, training_labels,verbose=1, batch_size=batch_size,validation_data=(validation_datas,validation_labels), epochs = epochs, callbacks=[CSVLogger(output_file_name+'.csv', append=True),ModelCheckpoint(output_file_name+'-{epoch:02d}-{val_loss:.5f}.hdf5', monitor='val_loss', verbose=1,mode='min')])

def lstm_type_cnn_1(symbol_str):
    df, original_df, time_stamps = getData(symbol_str)
    Scaler(df, original_df, time_stamps, symbol_str)
    os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
    os.environ['CUDA_VISIBLE_DEVICES'] = '1'
    os.environ['TF_CPP_MIN_LOG_LEVEL']='2'

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    set_session(tf.Session(config=config))

    with h5py.File("".join("./cnn/" + symbol_str + "_close.h5"), "r") as hf:
        datas = hf['inputs'].value
        labels = hf['outputs'].value

    step_size = datas.shape[1]
    units= 50
    second_units = 30
    batch_size = 8
    nb_features = datas.shape[2]
    epochs = 100
    output_size=16
    output_file_name = "cnn/" + symbol_str + "_CNN_LSTM_2_relu"
    #split training validation
    training_size = int(0.8* datas.shape[0])
    training_datas = datas[:training_size,:]
    training_labels = labels[:training_size,:,0]
    validation_datas = datas[training_size:,:]
    validation_labels = labels[training_size:,:,0]

    #build model
    model = Sequential()
    model.add(LSTM(units=units,activation='tanh', input_shape=(step_size,nb_features),return_sequences=False))
    model.add(Dropout(0.8))
    model.add(Dense(output_size))
    model.add(LeakyReLU())
    model.compile(loss='mse', optimizer='adam')
    model.fit(training_datas, training_labels, batch_size=batch_size,validation_data=(validation_datas,validation_labels), epochs = epochs, callbacks=[CSVLogger(output_file_name+'.csv', append=True),ModelCheckpoint(output_file_name+'-{epoch:02d}-{val_loss:.5f}.hdf5', monitor='val_loss', verbose=1,mode='min')])



# write code here
def premain(argparser):
    signal.signal(signal.SIGINT, SigHandler_SIGINT)
    #here
    #cnn_type_1("ETH")
    lstm_type_cnn_1("ETH")

def main():
    argparser = Argparser()
    if argparser.args.dbg:
        try:
            premain(argparser)
        except Exception as e:
            print(e.__doc__)
            if e.message: print(e.message)
            variables = globals().copy()
            variables.update(locals())
            shell = code.InteractiveConsole(variables)
            shell.interact(banner="DEBUG REPL")
    else:
        premain(argparser)

if __name__ == "__main__":
    main()