#!/usr/bin/python3
# _*_ coding=utf-8 _*_
# original source-https://medium.com/@huangkh19951228/predicting-cryptocurrency-price-with-tensorflow-and-keras-e1674b0dc58a
import argparse
import code
import readline
import signal
import sys
import json
import numpy as np
import os
import pandas as pd
import urllib3
import requests
from pathlib import Path
from sklearn.preprocessing import MinMaxScaler
import h5py
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten, Reshape
from keras.layers import Conv1D, MaxPooling1D, LeakyReLU, PReLU
from keras.layers import LSTM
from keras.utils import np_utils
from keras.callbacks import CSVLogger, ModelCheckpoint
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
def SigHandler_SIGINT(signum, frame):
print()
sys.exit(0)
class Argparser(object):
def __init__(self):
parser = argparse.ArgumentParser()
parser.add_argument("--string", type=str, help="string")
parser.add_argument("--bool", action="store_true", help="bool", default=False)
parser.add_argument("--dbg", action="store_true", help="debug", default=False)
self.args = parser.parse_args()
class PastSampler(object):
def __init__(self, N, K, sliding_window=True):
self.N = N
self.K = K
self.sliding_window = sliding_window
def transform(self, A):
M = self.N + self.K
if self.sliding_window:
I = np.arange(M) + np.arange(A.shape[0] - M + 1).reshape(-1,1)
else:
if A.shape[0]%M == 0:
I = np.arange(M) + np.arange(0, A.shape[0], M).reshape(-1,1)
else:
I = np.arange(M) + np.arange(0, A.shape[0] - M, M).reshape(-1,1)
B = A[I].reshape(-1, M*A.shape[1], A.shape[2])
ci = self.N*A.shape[1]
return B[:, :ci], B[:, ci:]
def getData(symbol_str):
data_file = Path("./cnn/" + symbol_str + ".csv")
original_columns =["close", "date", "high", "low", "open"]
new_columns = ["Close", "Timestamp", "High", "Low", "Open"]
columns = ["Close"]
url = "https://poloniex.com/public?command=returnChartData¤cyPair=USDT_" + symbol_str + "&start=1356998100&end=9999999999&period=300"
r = requests.get(url)
d = json.loads(r.content.decode("utf-8"))
df = pd.DataFrame(d)
df = df.loc[:, original_columns]
df.columns = new_columns
df.to_csv("./cnn/" + symbol_str + ".csv", index=None)
df = pd.read_csv(data_file)
time_stamps = df["Timestamp"]
df = df.loc[:, columns]
original_df = pd.read_csv(data_file).loc[:, columns]
return df, original_df, time_stamps
def Scaler(df, original_df, time_stamps, symbol_str):
file_name="./cnn/" + symbol_str + "_close.h5"
scaler = MinMaxScaler()
columns= ["Close"]
for c in columns:
df[c] = scaler.fit_transform(df[c].values.reshape(-1,1))
A = np.array(df)[:,None,:]
original_A = np.array(original_df)[:,None,:]
time_stamps = np.array(time_stamps)[:,None,None]
NPS, NFS = 256, 16
ps = PastSampler(NPS, NFS, sliding_window=False)
B, Y = ps.transform(A)
input_times, output_times = ps.transform(time_stamps)
original_B, original_Y = ps.transform(original_A)
with h5py.File(file_name, "w") as f:
f.create_dataset("inputs", data=B)
f.create_dataset("outputs", data=Y)
f.create_dataset("input_times", data=input_times)
f.create_dataset("output_times", data=output_times)
f.create_dataset("original_datas", data=np.array(original_df))
f.create_dataset("original_inputs", data=original_B)
f.create_dataset("original_outputs", data=original_Y)
def cnn_type_1(symbol_str):
df, original_df, time_stamps = getData(symbol_str)
Scaler(df, original_df, time_stamps, symbol_str)
# run on gpu
'''
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = "1"
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
'''
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
set_session(tf.Session(config=config))
with h5py.File("".join("./cnn/" + symbol_str + "_close.h5"), "r") as hf:
datas = hf["inputs"].value
labels = hf["outputs"].value
output_file_name = "cnn/" + symbol_str + "_CNN_2_relu"
step_size = datas.shape[1]
batch_size = 8
nb_features = datas.shape[2]
epochs = 100
#split training validation
training_size = int(0.8* datas.shape[0])
training_datas = datas[:training_size,:]
training_labels = labels[:training_size,:]
validation_datas = datas[training_size:,:]
validation_labels = labels[training_size:,:]
model = Sequential()
# 2 Layers
model.add(Conv1D(activation='relu', input_shape=(step_size, nb_features), strides=3, filters=8, kernel_size=20))
model.add(Dropout(0.5))
model.add(Conv1D( strides=4, filters=nb_features, kernel_size=16))
'''
# 3 Layers
model.add(Conv1D(activation='relu', input_shape=(step_size, nb_features), strides=3, filters=8, kernel_size=8))
#model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Conv1D(activation='relu', strides=2, filters=8, kernel_size=8))
#model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Conv1D( strides=2, filters=nb_features, kernel_size=8))
# 4 layers
model.add(Conv1D(activation='relu', input_shape=(step_size, nb_features), strides=2, filters=8, kernel_size=2))
#model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Conv1D(activation='relu', strides=2, filters=8, kernel_size=2))
#model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Conv1D(activation='relu', strides=2, filters=8, kernel_size=2))
#model.add(LeakyReLU())
model.add(Dropout(0.5))
model.add(Conv1D( strides=2, filters=nb_features, kernel_size=2))
'''
model.compile(loss='mse', optimizer='adam')
model.fit(training_datas, training_labels,verbose=1, batch_size=batch_size,validation_data=(validation_datas,validation_labels), epochs = epochs, callbacks=[CSVLogger(output_file_name+'.csv', append=True),ModelCheckpoint(output_file_name+'-{epoch:02d}-{val_loss:.5f}.hdf5', monitor='val_loss', verbose=1,mode='min')])
def lstm_type_cnn_1(symbol_str):
df, original_df, time_stamps = getData(symbol_str)
Scaler(df, original_df, time_stamps, symbol_str)
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
set_session(tf.Session(config=config))
with h5py.File("".join("./cnn/" + symbol_str + "_close.h5"), "r") as hf:
datas = hf['inputs'].value
labels = hf['outputs'].value
step_size = datas.shape[1]
units= 50
second_units = 30
batch_size = 8
nb_features = datas.shape[2]
epochs = 100
output_size=16
output_file_name = "cnn/" + symbol_str + "_CNN_LSTM_2_relu"
#split training validation
training_size = int(0.8* datas.shape[0])
training_datas = datas[:training_size,:]
training_labels = labels[:training_size,:,0]
validation_datas = datas[training_size:,:]
validation_labels = labels[training_size:,:,0]
#build model
model = Sequential()
model.add(LSTM(units=units,activation='tanh', input_shape=(step_size,nb_features),return_sequences=False))
model.add(Dropout(0.8))
model.add(Dense(output_size))
model.add(LeakyReLU())
model.compile(loss='mse', optimizer='adam')
model.fit(training_datas, training_labels, batch_size=batch_size,validation_data=(validation_datas,validation_labels), epochs = epochs, callbacks=[CSVLogger(output_file_name+'.csv', append=True),ModelCheckpoint(output_file_name+'-{epoch:02d}-{val_loss:.5f}.hdf5', monitor='val_loss', verbose=1,mode='min')])
# write code here
def premain(argparser):
signal.signal(signal.SIGINT, SigHandler_SIGINT)
#here
#cnn_type_1("ETH")
lstm_type_cnn_1("ETH")
def main():
argparser = Argparser()
if argparser.args.dbg:
try:
premain(argparser)
except Exception as e:
print(e.__doc__)
if e.message: print(e.message)
variables = globals().copy()
variables.update(locals())
shell = code.InteractiveConsole(variables)
shell.interact(banner="DEBUG REPL")
else:
premain(argparser)
if __name__ == "__main__":
main()