aboutsummaryrefslogblamecommitdiffstats
path: root/digester.py
blob: 0c17b1cd8585a4704be951317df73375279a1473 (plain) (tree)



























































































                                                                                                                                                                                                                                                 
#!/usr/bin/python3
# _*_ coding=utf-8 _*_
# original source:https://github.com/polyrabbit/hacker-news-digest/blob/master/%5Btutorial%5D%20How-to-extract-main-content-from-web-pages-using-Machine-Learning.ipynb

import argparse
import code
import readline
import signal
import sys
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.ensemble import RandomForestClassifier
from sklearn.naive_bayes import GaussianNB, MultinomialNB
from sklearn.svm import SVC

def SigHandler_SIGINT(signum, frame):
    print()
    sys.exit(0)

class Argparser(object):
    def __init__(self):
        parser = argparse.ArgumentParser()
        parser.add_argument("--string", type=str, help="string")
        parser.add_argument("--bool", action="store_true", help="bool", default=False)
        parser.add_argument("--dbg", action="store_true", help="debug", default=False)
        self.args = parser.parse_args()

# write code here
def premain(argparser):
    signal.signal(signal.SIGINT, SigHandler_SIGINT)
    #here
    dataframe = pd.read_csv('/tmp/features.csv')
    dataframe.head()
    y = dataframe.target
    X = dataframe.drop(['target'], axis=1)

    corpus = X['attr']
    vc = CountVectorizer()
    vc.fit(corpus)

    numeric_features = pd.concat([X.drop(['attr'], axis=1), pd.DataFrame(vc.transform(corpus).toarray(), columns=vc.vocabulary_)], axis=1)
    numeric_features.head()
    plt.scatter(dataframe.index, dataframe.target, color='red', label='target')
    plt.scatter(numeric_features.index, numeric_features.depth, color='green', label='depth')
    plt.scatter(numeric_features.index, numeric_features.text_ratio, color='blue', label='text_ratio')
    plt.scatter(numeric_features.index, numeric_features.alink_text_ratio, color='skyblue', label='alink_text_ratio')
    plt.legend(loc=(1, 0))
    plt.show()
    scaler = preprocessing.StandardScaler()
    scaler.fit(numeric_features)
    scaled_X = scaler.transform(numeric_features)

    # clf = MultinomialNB()
    # clf = RandomForestClassifier()
    clf = SVC(C=1, kernel='poly', probability=True)
    clf.fit(scaled_X, y)
    predicted_index = clf.predict(scaled_X).tolist().index(True)

    scaled_X = scaler.transform(numeric_features)
    pred_y = clf.predict(scaled_X)

    print pd.DataFrame(clf.predict_log_proba(scaled_X),columns=clf.classes_)
    print 'Number of mispredicted out of %d is %d (%.2f%%)' % (y.shape[0], (y!=pred_y).sum(), (y!=pred_y).sum()*100.0/y.shape[0])
    print
    print 'Predicted rows:'
    print dataframe[pred_y].drop(['text_ratio', 'alink_text_ratio', 'contain_title'], axis=1).merge(pd.DataFrame(clf.predict_log_proba(scaled_X)[pred_y],columns=clf.classes_, index=dataframe[pred_y].index), left_index=True, right_index=True)
    print

    # print 'Acutual rows:'
    # print dataframe[dataframe.target]

def main():
    argparser = Argparser()
    if argparser.args.dbg:
        try:
            premain(argparser)
        except Exception as e:
            print(e.__doc__)
            if e.message: print(e.message)
            variables = globals().copy()
            variables.update(locals())
            shell = code.InteractiveConsole(variables)
            shell.interact(banner="DEBUG REPL")
    else:
        premain(argparser)

if __name__ == "__main__":
    main()