diff options
author | bloodstalker <thabogre@gmail.com> | 2018-10-17 17:45:51 +0000 |
---|---|---|
committer | bloodstalker <thabogre@gmail.com> | 2018-10-17 17:45:51 +0000 |
commit | a7f7a083fc3e6eb7fc1c689c3dbf0e758670f6a4 (patch) | |
tree | 13879399c3ddec4743f8f6a884b0b67c4b4f0304 /dlstuff/one.py | |
parent | update (diff) | |
download | seer-a7f7a083fc3e6eb7fc1c689c3dbf0e758670f6a4.tar.gz seer-a7f7a083fc3e6eb7fc1c689c3dbf0e758670f6a4.zip |
update
Diffstat (limited to 'dlstuff/one.py')
-rwxr-xr-x | dlstuff/one.py | 78 |
1 files changed, 78 insertions, 0 deletions
diff --git a/dlstuff/one.py b/dlstuff/one.py new file mode 100755 index 0000000..4012b89 --- /dev/null +++ b/dlstuff/one.py @@ -0,0 +1,78 @@ +#!/usr/bin/python3 +# _*_ coding=utf-8 _*_ + +import argparse +import code +import readline +import signal +import sys +from keras.datasets import mnist +from keras import models +from keras import layers +from keras.utils import to_categorical +import matplotlib.pyplot as plt + +def SigHandler_SIGINT(signum, frame): + print() + sys.exit(0) + +class Argparser(object): + def __init__(self): + parser = argparse.ArgumentParser() + parser.add_argument("--string", type=str, help="string") + parser.add_argument("--bool", action="store_true", help="bool", default=False) + parser.add_argument("--dbg", action="store_true", help="debug", default=False) + self.args = parser.parse_args() + +# write code here +def premain(argparser): + signal.signal(signal.SIGINT, SigHandler_SIGINT) + #here + (train_images, train_labels), (test_images, test_labels) = mnist.load_data() + ''' + print(train_images.shape) + print(len(train_labels)) + print(train_labels) + print(test_images.shape) + print(len(test_labels)) + print(test_labels) + digit = train_images[4] + plt.imshow(digit, cmap=plt.cm.binary) + plt.show() + ''' + + network = models.Sequential() + network.add(layers.Dense(512, activation="relu", input_shape=(28*28,))) + network.add(layers.Dense(10, activation="softmax")) + #network.compile(optimizer="rmsprop", loss="categorical_crossentropy", metrics=["accuracy"]) + network.compile(optimizer="rmsprop", loss="mse", metrics=["accuracy"]) + + train_images = train_images.reshape((60000, 28 * 28)) + train_images = train_images.astype("float32") / 255 + test_images = test_images.reshape((10000, 28 * 28)) + test_images = test_images.astype("float32") / 255 + train_labels = to_categorical(train_labels) + test_labels = to_categorical(test_labels) + + network.fit(train_images, train_labels, epochs=5, batch_size=128) + + test_loss, test_acc = network.evaluate(test_images, test_labels) + print("test_acc:", test_acc) + +def main(): + argparser = Argparser() + if argparser.args.dbg: + try: + premain(argparser) + except Exception as e: + print(e.__doc__) + if e.message: print(e.message) + variables = globals().copy() + variables.update(locals()) + shell = code.InteractiveConsole(variables) + shell.interact(banner="DEBUG REPL") + else: + premain(argparser) + +if __name__ == "__main__": + main() |