diff options
author | terminaldweller <thabogre@gmail.com> | 2022-01-27 17:51:54 +0000 |
---|---|---|
committer | terminaldweller <thabogre@gmail.com> | 2022-01-27 17:51:54 +0000 |
commit | 02c8661250be26dc35b71c7fa9fb0f2eb9890b44 (patch) | |
tree | 708839587fb6e16b6e37465e15259461fb0b13fe /marionette.py | |
parent | update (diff) | |
download | seer-02c8661250be26dc35b71c7fa9fb0f2eb9890b44.tar.gz seer-02c8661250be26dc35b71c7fa9fb0f2eb9890b44.zip |
black and update
Diffstat (limited to 'marionette.py')
-rwxr-xr-x | marionette.py | 47 |
1 files changed, 36 insertions, 11 deletions
diff --git a/marionette.py b/marionette.py index 86c2175..9b8a6e7 100755 --- a/marionette.py +++ b/marionette.py @@ -20,37 +20,57 @@ from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from sklearn.naive_bayes import GaussianNB from sklearn.svm import SVC + def SigHandler_SIGINT(signum, frame): print() sys.exit(0) + class Argparser(object): def __init__(self): parser = argparse.ArgumentParser() parser.add_argument("--string", type=str, help="string") - parser.add_argument("--bool", action="store_true", help="bool", default=False) - parser.add_argument("--dbg", action="store_true", help="debug", default=False) + parser.add_argument( + "--bool", action="store_true", help="bool", default=False + ) + parser.add_argument( + "--dbg", action="store_true", help="debug", default=False + ) self.args = parser.parse_args() + def marrionette_type_1(): url = "https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data" - names = ["sepal-length", "sepal-width", "petal-length", "petal-width", "class"] + names = [ + "sepal-length", + "sepal-width", + "petal-length", + "petal-width", + "class", + ] dataset = pandas.read_csv(url, names=names) print(dataset.shape) print(dataset.head(20)) print(dataset.describe()) print(dataset.groupby("class").size()) - #dataset.plot(kind="box", subplots=True, layout=(2,2), sharex=False, sharey=False) - #dataset.hist() + # dataset.plot(kind="box", subplots=True, layout=(2,2), sharex=False, sharey=False) + # dataset.hist() pandas.plotting.scatter_matrix(dataset) plt.show() array = dataset.values - X = array[:,0:4] - Y = array[:,4] + X = array[:, 0:4] + Y = array[:, 4] validation_size = 0.20 seed = 7 - X_train, X_validation, Y_train, Y_validation = model_selection.train_test_split(X,Y,test_size=validation_size, random_state=seed) - scoring="accuracy" + ( + X_train, + X_validation, + Y_train, + Y_validation, + ) = model_selection.train_test_split( + X, Y, test_size=validation_size, random_state=seed + ) + scoring = "accuracy" models = [] models.append(("LR", LogisticRegression())) models.append(("LDA", LinearDiscriminantAnalysis())) @@ -62,7 +82,9 @@ def marrionette_type_1(): names = [] for name, model in models: kfold = model_selection.KFold(n_splits=10, random_state=seed) - cv_results = model_selection.cross_val_score(model, X_train, Y_train, cv=kfold, scoring=scoring) + cv_results = model_selection.cross_val_score( + model, X_train, Y_train, cv=kfold, scoring=scoring + ) results.append(cv_results) names.append(name) msg = "%s:%f(%f)" % (name, cv_results.mean(), cv_results.std()) @@ -82,12 +104,14 @@ def marrionette_type_1(): print(confusion_matrix(Y_validation, predictions)) print(classification_report(Y_validation, predictions)) + # write code here def premain(argparser): signal.signal(signal.SIGINT, SigHandler_SIGINT) - #here + # here marrionette_type_1() + def main(): argparser = Argparser() if argparser.args.dbg: @@ -101,5 +125,6 @@ def main(): else: premain(argparser) + if __name__ == "__main__": main() |