diff options
author | bloodstalker <thabogre@gmail.com> | 2018-09-02 13:38:33 +0000 |
---|---|---|
committer | bloodstalker <thabogre@gmail.com> | 2018-09-02 13:38:33 +0000 |
commit | 66afd62322e92666245ca7ceb8b070c4f6298a2c (patch) | |
tree | d442644ae71f5490e1ba1831ac1c2376c7c1ec4a /tfann.py | |
parent | update (diff) | |
download | seer-66afd62322e92666245ca7ceb8b070c4f6298a2c.tar.gz seer-66afd62322e92666245ca7ceb8b070c4f6298a2c.zip |
update
Diffstat (limited to 'tfann.py')
-rwxr-xr-x | tfann.py | 157 |
1 files changed, 157 insertions, 0 deletions
diff --git a/tfann.py b/tfann.py new file mode 100755 index 0000000..326182c --- /dev/null +++ b/tfann.py @@ -0,0 +1,157 @@ +#!/usr/bin/python3 +# _*_ coding=utf-8 _*_ +# original source-https://nicholastsmith.wordpress.com/2017/11/13/cryptocurrency-price-prediction-using-deep-learning-in-tensorflow/ + +import argparse +import code +import readline +import signal +import sys +from TFANN import ANNR +import numpy as np +import os +import pandas as pd +import urllib.request +import matplotlib.pyplot as mpl + +def SigHandler_SIGINT(signum, frame): + print() + sys.exit(0) + +class Argparser(object): + def __init__(self): + parser = argparse.ArgumentParser() + parser.add_argument("--string", type=str, help="string") + parser.add_argument("--bool", action="store_true", help="bool", default=False) + parser.add_argument("--dbg", action="store_true", help="debug", default=False) + self.args = parser.parse_args() + +def GetAPIUrl(cur, sts = 1420070400): + return 'https://poloniex.com/public?command=returnChartData¤cyPair=USDT_{:s}&start={:d}&end=9999999999&period=7200'.format(cur, sts) + +def GetCurDF(cur, fp): + openUrl = urllib.request.urlopen(GetAPIUrl(cur)) + r = openUrl.read() + openUrl.close() + df = pd.read_json(r.decode()) + df['date'] = df['date'].astype(np.int64) // 1000000000 + return df + +class PastSampler: + def __init__(self, N, K): + self.K = K + self.N = N + + def transform(self, A, Y = None): + M = self.N + self.K #Number of samples per row (sample + target) + #Matrix of sample indices like: {{1, 2..., M}, {2, 3, ..., M + 1}} + I = np.arange(M) + np.arange(A.shape[0] - M + 1).reshape(-1, 1) + B = A[I].reshape(-1, M * A.shape[1], *A.shape[2:]) + ci = self.N * A.shape[1] #Number of features per sample + return B[:, :ci], B[:, ci:] #Sample matrix, Target matrix + +def tfann_type_1(): + #%%Path to store cached currency data + datPath = 'CurDat/' + if not os.path.exists(datPath): + os.mkdir(datPath) + #Different cryptocurrency types + cl = ['BTC', 'LTC', 'ETH', 'XMR'] + #Columns of price data to use + CN = ['close', 'high', 'low', 'open', 'volume'] + #Store data frames for each of above types + D = [] + for ci in cl: + dfp = os.path.join(datPath, ci + '.csv') + try: + df = pd.read_csv(dfp, sep = ',') + except FileNotFoundError: + df = GetCurDF(ci, dfp) + D.append(df) + #%%Only keep range of data that is common to all currency types + cr = min(Di.shape[0] for Di in D) + for i in range(len(cl)): + D[i] = D[i][(D[i].shape[0] - cr):] + #%%Features are channels + C = np.hstack((Di[CN] for Di in D))[:, None, :] + HP = 16 #Holdout period + A = C[0:-HP] + SV = A.mean(axis = 0) #Scale vector + C /= SV #Basic scaling of data + #%%Make samples of temporal sequences of pricing data (channel) + NPS, NFS = 256, 16 #Number of past and future samples + ps = PastSampler(NPS, NFS) + B, Y = ps.transform(A) + #%%Architecture of the neural network + NC = B.shape[2] + #2 1-D conv layers with relu followed by 1-d conv output layer + ns = [('C1d', [8, NC, NC * 2], 4), ('AF', 'relu'), + ('C1d', [8, NC * 2, NC * 2], 2), ('AF', 'relu'), + ('C1d', [8, NC * 2, NC], 2)] + #Create the neural network in TensorFlow + cnnr = ANNR(B[0].shape, ns, batchSize = 32, learnRate = 2e-5, + maxIter = 64, reg = 1e-5, tol = 1e-2, verbose = True) + cnnr.fit(B, Y) + PTS = [] #Predicted time sequences + P, YH = B[[-1]], Y[[-1]] #Most recent time sequence + for i in range(HP // NFS): #Repeat prediction + P = np.concatenate([P[:, NFS:], YH], axis = 1) + YH = cnnr.predict(P) + PTS.append(YH) + PTS = np.hstack(PTS).transpose((1, 0, 2)) + A = np.vstack([A, PTS]) #Combine predictions with original data + A = np.squeeze(A) * SV #Remove unittime dimension and rescale + C = np.squeeze(C) * SV + nt = 4 + PF = cnnr.PredictFull(B[:nt]) + for i in range(nt): + fig, ax = mpl.subplots(1, 4, figsize = (16 / 1.24, 10 / 1.25)) + ax[0].plot(PF[0][i]) + ax[0].set_title('Input') + ax[1].plot(PF[2][i]) + ax[1].set_title('Layer 1') + ax[2].plot(PF[4][i]) + ax[2].set_title('Layer 2') + ax[3].plot(PF[5][i]) + ax[3].set_title('Output') + fig.text(0.5, 0.06, 'Time', ha='center') + fig.text(0.06, 0.5, 'Activation', va='center', rotation='vertical') + mpl.show() + CI = list(range(C.shape[0])) + AI = list(range(C.shape[0] + PTS.shape[0] - HP)) + NDP = PTS.shape[0] #Number of days predicted + for i, cli in enumerate(cl): + fig, ax = mpl.subplots(figsize = (16 / 1.5, 10 / 1.5)) + hind = i * len(CN) + CN.index('high') + ax.plot(CI[-4 * HP:], C[-4 * HP:, hind], label = 'Actual') + ax.plot(AI[-(NDP + 1):], A[-(NDP + 1):, hind], '--', label = 'Prediction') + ax.legend(loc = 'upper left') + ax.set_title(cli + ' (High)') + ax.set_ylabel('USD') + ax.set_xlabel('Time') + ax.axes.xaxis.set_ticklabels([]) + mpl.show() + +# write code here +def premain(argparser): + signal.signal(signal.SIGINT, SigHandler_SIGINT) + #here + tfann_type_1() + +def main(): + argparser = Argparser() + if argparser.args.dbg: + try: + premain(argparser) + except Exception as e: + print(e.__doc__) + if e.message: print(e.message) + variables = globals().copy() + variables.update(locals()) + shell = code.InteractiveConsole(variables) + shell.interact(banner="DEBUG REPL") + else: + premain(argparser) + +if __name__ == "__main__": + main() |