diff options
Diffstat (limited to 'dlstuff')
-rw-r--r-- | dlstuff/.two.py.swp | bin | 0 -> 12288 bytes | |||
-rwxr-xr-x | dlstuff/four.py | 106 | ||||
-rwxr-xr-x | dlstuff/one.py | 78 | ||||
-rwxr-xr-x | dlstuff/three.py | 119 | ||||
-rwxr-xr-x | dlstuff/two.py | 109 |
5 files changed, 412 insertions, 0 deletions
diff --git a/dlstuff/.two.py.swp b/dlstuff/.two.py.swp Binary files differnew file mode 100644 index 0000000..3e75bd6 --- /dev/null +++ b/dlstuff/.two.py.swp diff --git a/dlstuff/four.py b/dlstuff/four.py new file mode 100755 index 0000000..983386a --- /dev/null +++ b/dlstuff/four.py @@ -0,0 +1,106 @@ +#!/usr/bin/python3 +# _*_ coding=utf-8 _*_ + +import argparse +import code +import readline +import signal +import sys +import numpy as np +from keras.datasets import boston_housing +from keras import models +from keras import layers +import matplotlib.pyplot as plt +from keras.utils.np_utils import to_categorical + +def SigHandler_SIGINT(signum, frame): + print() + sys.exit(0) + +class Argparser(object): + def __init__(self): + parser = argparse.ArgumentParser() + parser.add_argument("--string", type=str, help="string") + parser.add_argument("--bool", action="store_true", help="bool", default=False) + parser.add_argument("--dbg", action="store_true", help="debug", default=False) + self.args = parser.parse_args() + +def build_model(train_data): + model = models.Sequential() + model.add(layers.Dense(64, activation="relu", input_shape=(train_data.shape[1],))) + model.add(layers.Dense(64, activation="relu")) + model.add(layers.Dense(1)) + model.compile(optimizer="rmsprop", loss="mse", metrics=["mae"]) + return model + +def smooth_curve(points, factor=0.9): + smoothed_points = [] + for point in points: + if smoothed_points: + previous = smoothed_points[-1] + smoothed_points.append(previous*factor+point*(1-factor)) + else: + smoothed_points.append(point) + return smoothed_points + +# write code here +def premain(argparser): + signal.signal(signal.SIGINT, SigHandler_SIGINT) + #here + (train_data, train_targets), (test_data, test_targets) = boston_housing.load_data() + mean = train_data.mean(axis=0) + train_data -= mean + std = train_data.std(axis=0) + train_data /= std + + test_data -= mean + test_data /= std + + k = 4 + num_epochs = 500 + num_val_samples = len(train_data) // k + num_epochs = 100 + all_scores = [] + all_mae_histories = [] + + for i in range(k): + print("processing fold #", i) + val_data = train_data[i*num_val_samples:(i+1)*num_val_samples] + val_targets = train_targets[i*num_val_samples:(i+1)*num_val_samples] + partial_train_data = np.concatenate( + [train_data[:i*num_val_samples], + train_data[(i+1)*num_val_samples:]], axis=0) + partial_train_targets = np.concatenate( + [train_targets[:i*num_val_samples], + train_targets[(i+1)*num_val_samples:]], axis=0) + model = build_model(train_data) + history = model.fit(partial_train_data, partial_train_targets, validation_data=(val_data, val_targets), epochs=num_epochs, batch_size=1, verbose=0) + val_mse, val_mae = model.evaluate(val_data, val_targets, verbose=0) + mae_history = history.history["val_mean_absolute_error"] + all_mae_histories.append(mae_history) + all_scores.append(val_mae) + + average_mae_history = [np.mean([x[i] for x in all_mae_histories]) for i in range(num_epochs)] + smoothed_mae_history = smooth_curve(average_mae_history[10:]) + plt.plot(range(1, len(smoothed_mae_history) + 1), smoothed_mae_history) + plt.xlabel("Epochs") + plt.ylabel("Validation MAE") + plt.show() + +def main(): + argparser = Argparser() + if argparser.args.dbg: + try: + premain(argparser) + except Exception as e: + print(e.__doc__) + if e.message: print(e.message) + variables = globals().copy() + variables.update(locals()) + shell = code.InteractiveConsole(variables) + shell.interact(banner="DEBUG REPL") + else: + premain(argparser) + +if __name__ == "__main__": + main() diff --git a/dlstuff/one.py b/dlstuff/one.py new file mode 100755 index 0000000..4012b89 --- /dev/null +++ b/dlstuff/one.py @@ -0,0 +1,78 @@ +#!/usr/bin/python3 +# _*_ coding=utf-8 _*_ + +import argparse +import code +import readline +import signal +import sys +from keras.datasets import mnist +from keras import models +from keras import layers +from keras.utils import to_categorical +import matplotlib.pyplot as plt + +def SigHandler_SIGINT(signum, frame): + print() + sys.exit(0) + +class Argparser(object): + def __init__(self): + parser = argparse.ArgumentParser() + parser.add_argument("--string", type=str, help="string") + parser.add_argument("--bool", action="store_true", help="bool", default=False) + parser.add_argument("--dbg", action="store_true", help="debug", default=False) + self.args = parser.parse_args() + +# write code here +def premain(argparser): + signal.signal(signal.SIGINT, SigHandler_SIGINT) + #here + (train_images, train_labels), (test_images, test_labels) = mnist.load_data() + ''' + print(train_images.shape) + print(len(train_labels)) + print(train_labels) + print(test_images.shape) + print(len(test_labels)) + print(test_labels) + digit = train_images[4] + plt.imshow(digit, cmap=plt.cm.binary) + plt.show() + ''' + + network = models.Sequential() + network.add(layers.Dense(512, activation="relu", input_shape=(28*28,))) + network.add(layers.Dense(10, activation="softmax")) + #network.compile(optimizer="rmsprop", loss="categorical_crossentropy", metrics=["accuracy"]) + network.compile(optimizer="rmsprop", loss="mse", metrics=["accuracy"]) + + train_images = train_images.reshape((60000, 28 * 28)) + train_images = train_images.astype("float32") / 255 + test_images = test_images.reshape((10000, 28 * 28)) + test_images = test_images.astype("float32") / 255 + train_labels = to_categorical(train_labels) + test_labels = to_categorical(test_labels) + + network.fit(train_images, train_labels, epochs=5, batch_size=128) + + test_loss, test_acc = network.evaluate(test_images, test_labels) + print("test_acc:", test_acc) + +def main(): + argparser = Argparser() + if argparser.args.dbg: + try: + premain(argparser) + except Exception as e: + print(e.__doc__) + if e.message: print(e.message) + variables = globals().copy() + variables.update(locals()) + shell = code.InteractiveConsole(variables) + shell.interact(banner="DEBUG REPL") + else: + premain(argparser) + +if __name__ == "__main__": + main() diff --git a/dlstuff/three.py b/dlstuff/three.py new file mode 100755 index 0000000..fe6e2ee --- /dev/null +++ b/dlstuff/three.py @@ -0,0 +1,119 @@ +#!/usr/bin/python3 +# _*_ coding=utf-8 _*_ + +import argparse +import code +import readline +import signal +import sys +import numpy as np +from keras.datasets import reuters +from keras import models +from keras import layers +import matplotlib.pyplot as plt +from keras.utils.np_utils import to_categorical + +def SigHandler_SIGINT(signum, frame): + print() + sys.exit(0) + +class Argparser(object): + def __init__(self): + parser = argparse.ArgumentParser() + parser.add_argument("--string", type=str, help="string") + parser.add_argument("--bool", action="store_true", help="bool", default=False) + parser.add_argument("--dbg", action="store_true", help="debug", default=False) + self.args = parser.parse_args() + +def vectorize_sequences(sequences, dimension=10000): + results = np.zeros((len(sequences), dimension)) + for i, sequence in enumerate(sequences): + results[i, sequence] = 1. + return results + +def to_one_hot(labels, dimension=46): + results = np.zeros((len(sequences), dimension)) + for i, label in enumerate(labels): + results[i, label] = 1. + return results + +def plot_loss(history): + history_dic = history.history + loss_values = history_dic["loss"] + val_loss_values = history_dic["val_loss"] + epochs = range(1, len(history_dic["loss"]) + 1) + plt.plot(epochs, loss_values, "bo", label="Training Loss") + plt.plot(epochs, val_loss_values, "b", label="Validation Loss") + plt.title("training and validation loss") + plt.xlabel("Epochs") + plt.ylabel("Loss") + plt.legend() + plt.show() + +def plot_acc(history): + history_dic = history.history + acc_values = history_dic["acc"] + val_acc_values = history_dic["val_acc"] + epochs = range(1, len(history_dic["acc"]) + 1) + plt.plot(epochs, acc_values, "bo", label="Training Acc") + plt.plot(epochs, val_acc_values, "b", label="Validation Acc") + plt.title("training and validation acc") + plt.xlabel("Epochs") + plt.ylabel("Acc") + plt.legend() + plt.show() + +# write code here +def premain(argparser): + signal.signal(signal.SIGINT, SigHandler_SIGINT) + #here + (train_data, train_labels), (test_data, test_labels) = reuters.load_data(num_words=10000) + #print(len(train_data)) + #print(len(test_data)) + x_train = vectorize_sequences(train_data) + x_test = vectorize_sequences(test_data) + #one_hot_train_labels = to_one_hot(train_labels) + #one_hot_test_labels = to_one_hot(test_labels) + one_hot_train_labels = to_categorical(train_labels) + one_hot_test_labels = to_categorical(test_labels) + + model = models.Sequential() + model.add(layers.Dense(64, activation="relu", input_shape=(10000,))) + #model.add(layers.Dense(64, activation="relu")) + model.add(layers.Dense(46, activation="softmax")) + model.compile(optimizer="rmsprop", loss="categorical_crossentropy", metrics=["accuracy"]) + + x_val = x_train[:1000] + partial_x_train = x_train[1000:] + y_val = one_hot_train_labels[:1000] + partial_y_train = one_hot_train_labels[1000:] + history = model.fit(partial_x_train, partial_y_train, epochs=9, batch_size=512, validation_data=(x_val, y_val)) + ''' + plot_loss(history) + plt.clf() + plot_acc(history) + ''' + results = model.evaluate(x_test, one_hot_test_labels) + print(results) + + predictions = model.predict(x_test) + + + +def main(): + argparser = Argparser() + if argparser.args.dbg: + try: + premain(argparser) + except Exception as e: + print(e.__doc__) + if e.message: print(e.message) + variables = globals().copy() + variables.update(locals()) + shell = code.InteractiveConsole(variables) + shell.interact(banner="DEBUG REPL") + else: + premain(argparser) + +if __name__ == "__main__": + main() diff --git a/dlstuff/two.py b/dlstuff/two.py new file mode 100755 index 0000000..9eab134 --- /dev/null +++ b/dlstuff/two.py @@ -0,0 +1,109 @@ +#!/usr/bin/python3 +# _*_ coding=utf-8 _*_ + +import argparse +import code +import readline +import signal +import sys +from keras.datasets import imdb +import numpy as np +from keras import models +from keras import layers +import matplotlib.pyplot as plt + +def SigHandler_SIGINT(signum, frame): + print() + sys.exit(0) + +class Argparser(object): + def __init__(self): + parser = argparse.ArgumentParser() + parser.add_argument("--string", type=str, help="string") + parser.add_argument("--bool", action="store_true", help="bool", default=False) + parser.add_argument("--dbg", action="store_true", help="debug", default=False) + self.args = parser.parse_args() + +def vectorize_sequences(sequences, dimension=10000): + results = np.zeros((len(sequences), dimension)) + for i, sequence in enumerate(sequences): + results[i, sequence] = 1. + return results + +def plot_loss(history): + history_dic = history.history + loss_values = history_dic["loss"] + val_loss_values = history_dic["val_loss"] + epochs = range(1, len(history_dic["loss"]) + 1) + plt.plot(epochs, loss_values, "bo", label="Training Loss") + plt.plot(epochs, val_loss_values, "b", label="Validation Loss") + plt.title("training and validation loss") + plt.xlabel("Epochs") + plt.ylabel("Loss") + plt.legend() + plt.show() + +def plot_acc(history): + history_dic = history.history + acc_values = history_dic["acc"] + val_acc_values = history_dic["val_acc"] + epochs = range(1, len(history_dic["acc"]) + 1) + plt.plot(epochs, acc_values, "bo", label="Training Acc") + plt.plot(epochs, val_acc_values, "b", label="Validation Acc") + plt.title("training and validation acc") + plt.xlabel("Epochs") + plt.ylabel("Acc") + plt.legend() + plt.show() + +# write code here +def premain(argparser): + signal.signal(signal.SIGINT, SigHandler_SIGINT) + #here + (train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000) + x_train = vectorize_sequences(train_data) + x_test = vectorize_sequences(test_data) + y_train = np.asarray(train_labels).astype("float32") + y_test = np.asarray(test_labels).astype("float32") + + model = models.Sequential() + model.add(layers.Dense(16, activation="relu", input_shape=(10000,))) + model.add(layers.Dense(16, activation="relu")) + model.add(layers.Dense(1, activation="sigmoid")) + + x_val = x_train[:10000] + partial_x_train = x_train[10000:] + y_val = y_train[:10000] + partial_y_train = y_train[10000:] + + model.compile(optimizer="rmsprop", loss="binary_crossentropy", metrics=["acc"]) + + ''' + history = model.fit(partial_x_train, partial_y_train, epochs=20, batch_size=512, validation_data=(x_val, y_val)) + plot_loss(history) + plt.clf() + plot_acc(history) + ''' + + model.fit(x_train, y_train, epochs=4, batch_size=512) + results = model.evaluate(x_test, y_test) + print(results) + + +def main(): + argparser = Argparser() + if argparser.args.dbg: + try: + premain(argparser) + except Exception as e: + print(e.__doc__) + if e.message: print(e.message) + variables = globals().copy() + variables.update(locals()) + shell = code.InteractiveConsole(variables) + shell.interact(banner="DEBUG REPL") + else: + premain(argparser) + +if __name__ == "__main__": + main() |