aboutsummaryrefslogtreecommitdiffstats
path: root/cnn.py
blob: bd0cb78588d0f0558f040847aec44f49cc06f4a2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
#!/usr/bin/python3
# _*_ coding=utf-8 _*_
# original source-https://medium.com/@huangkh19951228/predicting-cryptocurrency-price-with-tensorflow-and-keras-e1674b0dc58a

import argparse
import code
import readline
import signal
import sys
import json
import numpy as np
import os
import pandas as pd
import urllib3
import requests
from pathlib import Path
from sklearn.preprocessing import MinMaxScaler
import h5py
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation, Flatten, Reshape
from keras.layers import Conv1D, MaxPooling1D, LeakyReLU, PReLU
from keras.layers import LSTM
from keras.layers import GRU, CuDNNGRU
from keras.utils import np_utils
from keras.callbacks import CSVLogger, ModelCheckpoint
import tensorflow as tf
from keras.backend.tensorflow_backend import set_session
from keras import applications
from keras.models import Model
from scipy.ndimage import imread
import random
from keras import backend as K
import keras
from keras import optimizers
import matplotlib.pyplot as plt


def SigHandler_SIGINT(signum, frame):
    print()
    sys.exit(0)


class Argparser(object):
    def __init__(self):
        parser = argparse.ArgumentParser()
        parser.add_argument("--string", type=str, help="string")
        parser.add_argument(
            "--bool", action="store_true", help="bool", default=False
        )
        parser.add_argument(
            "--dbg", action="store_true", help="debug", default=False
        )
        self.args = parser.parse_args()


class PastSampler(object):
    def __init__(self, N, K, sliding_window=True):
        self.N = N
        self.K = K
        self.sliding_window = sliding_window

    def transform(self, A):
        M = self.N + self.K
        if self.sliding_window:
            I = np.arange(M) + np.arange(A.shape[0] - M + 1).reshape(-1, 1)
        else:
            if A.shape[0] % M == 0:
                I = np.arange(M) + np.arange(0, A.shape[0], M).reshape(-1, 1)
            else:
                I = np.arange(M) + np.arange(0, A.shape[0] - M, M).reshape(
                    -1, 1
                )

        B = A[I].reshape(-1, M * A.shape[1], A.shape[2])
        ci = self.N * A.shape[1]
        return B[:, :ci], B[:, ci:]


def getData(symbol_str):
    data_file = Path("./cnn/" + symbol_str + ".csv")
    original_columns = ["close", "date", "high", "low", "open"]
    new_columns = ["Close", "Timestamp", "High", "Low", "Open"]
    columns = ["Close"]
    url = (
        "https://poloniex.com/public?command=returnChartData&currencyPair=USDT_"
        + symbol_str
        + "&start=1356998100&end=9999999999&period=300"
    )
    r = requests.get(url)
    d = json.loads(r.content.decode("utf-8"))
    df = pd.DataFrame(d)

    df = df.loc[:, original_columns]
    df.columns = new_columns
    df.to_csv("./cnn/" + symbol_str + ".csv", index=None)
    df = pd.read_csv(data_file)
    time_stamps = df["Timestamp"]
    df = df.loc[:, columns]
    original_df = pd.read_csv(data_file).loc[:, columns]
    return df, original_df, time_stamps


def Scaler(df, original_df, time_stamps, symbol_str):
    file_name = "./cnn/" + symbol_str + "_close.h5"
    scaler = MinMaxScaler()
    columns = ["Close"]
    for c in columns:
        df[c] = scaler.fit_transform(df[c].values.reshape(-1, 1))
    A = np.array(df)[:, None, :]
    original_A = np.array(original_df)[:, None, :]
    time_stamps = np.array(time_stamps)[:, None, None]
    NPS, NFS = 256, 16
    ps = PastSampler(NPS, NFS, sliding_window=False)
    B, Y = ps.transform(A)
    input_times, output_times = ps.transform(time_stamps)
    original_B, original_Y = ps.transform(original_A)

    with h5py.File(file_name, "w") as f:
        f.create_dataset("inputs", data=B)
        f.create_dataset("outputs", data=Y)
        f.create_dataset("input_times", data=input_times)
        f.create_dataset("output_times", data=output_times)
        f.create_dataset("original_datas", data=np.array(original_df))
        f.create_dataset("original_inputs", data=original_B)
        f.create_dataset("original_outputs", data=original_Y)


def cnn_type_1(symbol_str):
    df, original_df, time_stamps = getData(symbol_str)
    Scaler(df, original_df, time_stamps, symbol_str)
    # run on gpu
    """
    os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
    os.environ["CUDA_VISIBLE_DEVICES"] = "1"
    os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
    """

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    set_session(tf.Session(config=config))

    with h5py.File("".join("./cnn/" + symbol_str + "_close.h5"), "r") as hf:
        datas = hf["inputs"].value
        labels = hf["outputs"].value

    output_file_name = "cnn/" + symbol_str + "_CNN_2_relu"
    step_size = datas.shape[1]
    batch_size = 8
    nb_features = datas.shape[2]

    epochs = 100

    # split training validation
    training_size = int(0.8 * datas.shape[0])
    training_datas = datas[:training_size, :]
    training_labels = labels[:training_size, :]
    validation_datas = datas[training_size:, :]
    validation_labels = labels[training_size:, :]

    model = Sequential()

    # 2 Layers
    model.add(
        Conv1D(
            activation="relu",
            input_shape=(step_size, nb_features),
            strides=3,
            filters=8,
            kernel_size=20,
        )
    )
    model.add(Dropout(0.5))
    model.add(Conv1D(strides=4, filters=nb_features, kernel_size=16))

    """
    # 3 Layers
    model.add(Conv1D(activation='relu', input_shape=(step_size, nb_features), strides=3, filters=8, kernel_size=8))
    #model.add(LeakyReLU())
    model.add(Dropout(0.5))
    model.add(Conv1D(activation='relu', strides=2, filters=8, kernel_size=8))
    #model.add(LeakyReLU())
    model.add(Dropout(0.5))
    model.add(Conv1D( strides=2, filters=nb_features, kernel_size=8))
    # 4 layers
    model.add(Conv1D(activation='relu', input_shape=(step_size, nb_features), strides=2, filters=8, kernel_size=2))
    #model.add(LeakyReLU())
    model.add(Dropout(0.5))
    model.add(Conv1D(activation='relu', strides=2, filters=8, kernel_size=2))
    #model.add(LeakyReLU())
    model.add(Dropout(0.5))
    model.add(Conv1D(activation='relu', strides=2, filters=8, kernel_size=2))
    #model.add(LeakyReLU())
    model.add(Dropout(0.5))
    model.add(Conv1D( strides=2, filters=nb_features, kernel_size=2))
    """

    model.compile(loss="mse", optimizer="adam")
    model.fit(
        training_datas,
        training_labels,
        verbose=1,
        batch_size=batch_size,
        validation_data=(validation_datas, validation_labels),
        epochs=epochs,
        callbacks=[
            CSVLogger(output_file_name + ".csv", append=True),
            ModelCheckpoint(
                output_file_name + "-{epoch:02d}-{val_loss:.5f}.hdf5",
                monitor="val_loss",
                verbose=1,
                mode="min",
            ),
        ],
    )


def lstm_type_cnn_1(symbol_str, kind):
    df, original_df, time_stamps = getData(symbol_str)
    Scaler(df, original_df, time_stamps, symbol_str)
    """
    os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
    os.environ['CUDA_VISIBLE_DEVICES'] = '1'
    os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
    """

    config = tf.ConfigProto()
    config.gpu_options.allow_growth = True
    set_session(tf.Session(config=config))

    with h5py.File("".join("./cnn/" + symbol_str + "_close.h5"), "r") as hf:
        datas = hf["inputs"].value
        labels = hf["outputs"].value

    step_size = datas.shape[1]
    units = 50
    second_units = 30
    batch_size = 8
    nb_features = datas.shape[2]
    epochs = 100
    output_size = 16
    output_file_name = "cnn/" + symbol_str + "_CNN_LSTM_2_relu"
    # split training validation
    training_size = int(0.8 * datas.shape[0])
    training_datas = datas[:training_size, :]
    training_labels = labels[:training_size, :, 0]
    validation_datas = datas[training_size:, :]
    validation_labels = labels[training_size:, :, 0]

    # build model
    model = Sequential()
    if kind == "GRU":
        model.add(
            GRU(
                units=units,
                activation="tanh",
                input_shape=(step_size, nb_features),
                return_sequences=False,
            )
        )
    elif kind == "LSTM":
        model.add(
            LSTM(
                units=units,
                activation="tanh",
                input_shape=(step_size, nb_features),
                return_sequences=False,
            )
        )
    model.add(Dropout(0.8))
    model.add(Dense(output_size))
    model.add(LeakyReLU())
    model.compile(loss="mse", optimizer="adam")
    model.fit(
        training_datas,
        training_labels,
        batch_size=batch_size,
        validation_data=(validation_datas, validation_labels),
        epochs=epochs,
        callbacks=[
            CSVLogger(output_file_name + ".csv", append=True),
            ModelCheckpoint(
                output_file_name + "-{epoch:02d}-{val_loss:.5f}.hdf5",
                monitor="val_loss",
                verbose=1,
                mode="min",
            ),
        ],
    )


def load_cnn_type_1(symbol_str, vis_year, vis_month):
    df, original_df, time_stamps = getData(symbol_str)
    Scaler(df, original_df, time_stamps, symbol_str)
    """
    os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
    os.environ['CUDA_VISIBLE_DEVICES'] = '0'
    os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
    """

    with h5py.File("".join("./cnn/" + symbol_str + "_close.h5"), "r") as hf:
        datas = hf["inputs"].value
        labels = hf["outputs"].value
        input_times = hf["input_times"].value
        output_times = hf["output_times"].value
        original_inputs = hf["original_inputs"].value
        original_outputs = hf["original_outputs"].value
        original_datas = hf["original_datas"].value

    scaler = MinMaxScaler()
    # split training validation
    training_size = int(0.8 * datas.shape[0])
    training_datas = datas[:training_size, :, :]
    training_labels = labels[:training_size, :, :]
    validation_datas = datas[training_size:, :, :]
    validation_labels = labels[training_size:, :, :]
    validation_original_outputs = original_outputs[training_size:, :, :]
    validation_original_inputs = original_inputs[training_size:, :, :]
    validation_input_times = input_times[training_size:, :, :]
    validation_output_times = output_times[training_size:, :, :]

    ground_true = np.append(
        validation_original_inputs, validation_original_outputs, axis=1
    )
    ground_true_times = np.append(
        validation_input_times, validation_output_times, axis=1
    )
    step_size = datas.shape[1]
    batch_size = 8
    nb_features = datas.shape[2]

    model = Sequential()

    # 2 layers
    model.add(
        Conv1D(
            activation="relu",
            input_shape=(step_size, nb_features),
            strides=3,
            filters=8,
            kernel_size=20,
        )
    )
    # model.add(LeakyReLU())
    model.add(Dropout(0.25))
    model.add(Conv1D(strides=4, filters=nb_features, kernel_size=16))
    model.load_weights("cnn/" + symbol_str + "_CNN_2_relu-76-0.00036.hdf5")
    model.compile(loss="mse", optimizer="adam")

    predicted = model.predict(validation_datas)
    predicted_inverted = []

    for i in range(original_datas.shape[1]):
        scaler.fit(original_datas[:, i].reshape(-1, 1))
        predicted_inverted.append(scaler.inverse_transform(predicted[:, :, i]))
    print(np.array(predicted_inverted).shape)
    # get only the close data
    ground_true = ground_true[:, :, 0].reshape(-1)
    ground_true_times = ground_true_times.reshape(-1)
    ground_true_times = pd.to_datetime(ground_true_times, unit="s")
    # since we are appending in the first dimension
    predicted_inverted = np.array(predicted_inverted)[0, :, :].reshape(-1)
    print(np.array(predicted_inverted).shape)
    validation_output_times = pd.to_datetime(
        validation_output_times.reshape(-1), unit="s"
    )

    ground_true_df = pd.DataFrame()
    ground_true_df["times"] = ground_true_times
    ground_true_df["value"] = ground_true

    prediction_df = pd.DataFrame()
    prediction_df["times"] = validation_output_times
    prediction_df["value"] = predicted_inverted

    prediction_df = prediction_df.loc[
        (prediction_df["times"].dt.year == vis_year)
        & (prediction_df["times"].dt.month > vis_month),
        :,
    ]
    ground_true_df = ground_true_df.loc[
        (ground_true_df["times"].dt.year == vis_year)
        & (ground_true_df["times"].dt.month > vis_month),
        :,
    ]

    plt.figure(figsize=(20, 10))
    plt.plot(ground_true_df.times, ground_true_df.value, label="Actual")
    plt.plot(prediction_df.times, prediction_df.value, "ro", label="Predicted")
    plt.legend(loc="upper left")
    plt.show()


# write code here
def premain(argparser):
    signal.signal(signal.SIGINT, SigHandler_SIGINT)
    # here
    # cnn_type_1("ETH")
    # lstm_type_cnn_1("ETH", "GRU")
    load_cnn_type_1("ETH", 2018, 4)


def main():
    argparser = Argparser()
    if argparser.args.dbg:
        try:
            premain(argparser)
        except Exception as e:
            print(e.__doc__)
            if e.message:
                print(e.message)
            variables = globals().copy()
            variables.update(locals())
            shell = code.InteractiveConsole(variables)
            shell.interact(banner="DEBUG REPL")
    else:
        premain(argparser)


if __name__ == "__main__":
    main()